metadata
tags:
- image-classification
- ecology
- animals
- re-identification
library_name: wildlife-datasets
license: cc-by-nc-4.0
Model card for MegaDescriptor-L-384
A Swin-L image feature model. Superwisely pre-trained on animal re-identification datasets.
Model Details
- Model Type: Animal re-identification / feature backbone
- Model Stats:
- Params (M): 228.8
- Image size: 384 x 384
- Architecture: swin_large_patch4_window12_384
- Paper: WildlifeDatasets_An_Open-Source_Toolkit_for_Animal_Re-Identification
- Related Papers:
- Pretrain Dataset: All available re-identification datasets --> https://github.com/WildlifeDatasets/wildlife-datasets
Model Usage
Image Embeddings
import timm
import torch
import torchvision.transforms as T
from PIL import Image
from urllib.request import urlopen
model = timm.create_model("hf-hub:BVRA/MegaDescriptor-L-384", pretrained=True)
model = model.eval()
train_transforms = T.Compose([T.Resize(size=(384, 384)),
T.ToTensor(),
T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
img = Image.open(urlopen(
'https://huggingface.co./datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
output = model(train_transforms(img).unsqueeze(0)) # output is (batch_size, num_features) shaped tensor
# output is a (1, num_features) shaped tensor
Citation
@inproceedings{vcermak2024wildlifedatasets,
title={WildlifeDatasets: An open-source toolkit for animal re-identification},
author={{\v{C}}erm{\'a}k, Vojt{\v{e}}ch and Picek, Lukas and Adam, Luk{\'a}{\v{s}} and Papafitsoros, Kostas},
booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision},
pages={5953--5963},
year={2024}
}