NOVA
Collection
NOVA: Autoregressive Video Generation without Vector Quantization
β’
6 items
β’
Updated
β’
4
Using the π€'s Diffusers library to run NOVA in a simple and efficient manner.
pip install diffusers transformers accelerate imageio[ffmpeg]
pip install git+ssh://[email protected]/baaivision/NOVA.git
Running the pipeline:
import torch
from diffnext.pipelines import NOVAPipeline
from diffnext.utils import export_to_image, export_to_video
model_id = "BAAI/nova-d48w1024-osp480"
model_args = {"torch_dtype": torch.float16, "trust_remote_code": True}
pipe = NOVAPipeline.from_pretrained(model_id, **model_args)
pipe = pipe.to("cuda")
prompt = "Many spotted jellyfish pulsating under water."
image = pipe(prompt, max_latent_length=1).frames[0, 0]
export_to_image(image, "jellyfish.jpg")
video = pipe(prompt, max_latent_length=9).frames[0]
export_to_video(video, "jellyfish.mp4", fps=12)
# Increase AR and diffusion steps for better video quality.
video = pipe(
prompt,
max_latent_length=9,
num_inference_steps=128, # default: 64
num_diffusion_steps=100, # default: 25
).frames[0]
export_to_video(video, "jellyfish_v2.mp4", fps=12)
The model is intended for research purposes only. Possible research areas and tasks include
Excluded uses are described below.
The model was not trained to be factual or true representations of people or events, and therefore using the model to generate such content is out-of-scope for the abilities of this model.
Using the model to generate content that is cruel to individuals is a misuse of this model. This includes, but is not limited to:
While the capabilities of image generation models are impressive, they can also reinforce or exacerbate social biases.