bge-large-en / README.md
ldwang's picture
upload
f436171
|
raw
history blame
62.4 kB
metadata
tags:
  - mteb
model-index:
  - name: bge-large-en
    results:
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_counterfactual
          name: MTEB AmazonCounterfactualClassification (en)
          config: en
          split: test
          revision: e8379541af4e31359cca9fbcf4b00f2671dba205
        metrics:
          - type: accuracy
            value: 76.08955223880598
          - type: ap
            value: 38.998374408322256
          - type: f1
            value: 70.01942671241072
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_polarity
          name: MTEB AmazonPolarityClassification
          config: default
          split: test
          revision: e2d317d38cd51312af73b3d32a06d1a08b442046
        metrics:
          - type: accuracy
            value: 92.11545000000001
          - type: ap
            value: 88.54348935561237
          - type: f1
            value: 92.09140230508743
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (en)
          config: en
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 47.022
          - type: f1
            value: 46.6104601802574
      - task:
          type: Retrieval
        dataset:
          type: arguana
          name: MTEB ArguAna
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 39.972
          - type: map_at_10
            value: 54.874
          - type: map_at_100
            value: 55.53399999999999
          - type: map_at_1000
            value: 55.539
          - type: map_at_3
            value: 51.031000000000006
          - type: map_at_5
            value: 53.342999999999996
          - type: mrr_at_1
            value: 40.541
          - type: mrr_at_10
            value: 55.096000000000004
          - type: mrr_at_100
            value: 55.75599999999999
          - type: mrr_at_1000
            value: 55.761
          - type: mrr_at_3
            value: 51.221000000000004
          - type: mrr_at_5
            value: 53.568000000000005
          - type: ndcg_at_1
            value: 39.972
          - type: ndcg_at_10
            value: 62.456999999999994
          - type: ndcg_at_100
            value: 65.262
          - type: ndcg_at_1000
            value: 65.389
          - type: ndcg_at_3
            value: 54.673
          - type: ndcg_at_5
            value: 58.80499999999999
          - type: precision_at_1
            value: 39.972
          - type: precision_at_10
            value: 8.634
          - type: precision_at_100
            value: 0.9860000000000001
          - type: precision_at_1000
            value: 0.1
          - type: precision_at_3
            value: 21.740000000000002
          - type: precision_at_5
            value: 15.036
          - type: recall_at_1
            value: 39.972
          - type: recall_at_10
            value: 86.344
          - type: recall_at_100
            value: 98.578
          - type: recall_at_1000
            value: 99.57300000000001
          - type: recall_at_3
            value: 65.22
          - type: recall_at_5
            value: 75.178
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-p2p
          name: MTEB ArxivClusteringP2P
          config: default
          split: test
          revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
        metrics:
          - type: v_measure
            value: 48.94652870403906
      - task:
          type: Clustering
        dataset:
          type: mteb/arxiv-clustering-s2s
          name: MTEB ArxivClusteringS2S
          config: default
          split: test
          revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
        metrics:
          - type: v_measure
            value: 43.17257160340209
      - task:
          type: Reranking
        dataset:
          type: mteb/askubuntudupquestions-reranking
          name: MTEB AskUbuntuDupQuestions
          config: default
          split: test
          revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
        metrics:
          - type: map
            value: 63.97867370559182
          - type: mrr
            value: 77.00820032537484
      - task:
          type: STS
        dataset:
          type: mteb/biosses-sts
          name: MTEB BIOSSES
          config: default
          split: test
          revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
        metrics:
          - type: cos_sim_pearson
            value: 80.00986015960616
          - type: cos_sim_spearman
            value: 80.36387933827882
          - type: euclidean_pearson
            value: 80.32305287257296
          - type: euclidean_spearman
            value: 82.0524720308763
          - type: manhattan_pearson
            value: 80.19847473906454
          - type: manhattan_spearman
            value: 81.87957652506985
      - task:
          type: Classification
        dataset:
          type: mteb/banking77
          name: MTEB Banking77Classification
          config: default
          split: test
          revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
        metrics:
          - type: accuracy
            value: 87.8603896103896
          - type: f1
            value: 87.84830089792524
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-p2p
          name: MTEB BiorxivClusteringP2P
          config: default
          split: test
          revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
        metrics:
          - type: v_measure
            value: 41.36932844640705
      - task:
          type: Clustering
        dataset:
          type: mteb/biorxiv-clustering-s2s
          name: MTEB BiorxivClusteringS2S
          config: default
          split: test
          revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
        metrics:
          - type: v_measure
            value: 38.34983239611985
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackAndroidRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.257999999999996
          - type: map_at_10
            value: 42.937
          - type: map_at_100
            value: 44.406
          - type: map_at_1000
            value: 44.536
          - type: map_at_3
            value: 39.22
          - type: map_at_5
            value: 41.458
          - type: mrr_at_1
            value: 38.769999999999996
          - type: mrr_at_10
            value: 48.701
          - type: mrr_at_100
            value: 49.431000000000004
          - type: mrr_at_1000
            value: 49.476
          - type: mrr_at_3
            value: 45.875
          - type: mrr_at_5
            value: 47.67
          - type: ndcg_at_1
            value: 38.769999999999996
          - type: ndcg_at_10
            value: 49.35
          - type: ndcg_at_100
            value: 54.618
          - type: ndcg_at_1000
            value: 56.655
          - type: ndcg_at_3
            value: 43.826
          - type: ndcg_at_5
            value: 46.72
          - type: precision_at_1
            value: 38.769999999999996
          - type: precision_at_10
            value: 9.328
          - type: precision_at_100
            value: 1.484
          - type: precision_at_1000
            value: 0.196
          - type: precision_at_3
            value: 20.649
          - type: precision_at_5
            value: 15.25
          - type: recall_at_1
            value: 32.257999999999996
          - type: recall_at_10
            value: 61.849
          - type: recall_at_100
            value: 83.70400000000001
          - type: recall_at_1000
            value: 96.344
          - type: recall_at_3
            value: 46.037
          - type: recall_at_5
            value: 53.724000000000004
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackEnglishRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 32.979
          - type: map_at_10
            value: 43.376999999999995
          - type: map_at_100
            value: 44.667
          - type: map_at_1000
            value: 44.794
          - type: map_at_3
            value: 40.461999999999996
          - type: map_at_5
            value: 42.138
          - type: mrr_at_1
            value: 41.146
          - type: mrr_at_10
            value: 49.575
          - type: mrr_at_100
            value: 50.187000000000005
          - type: mrr_at_1000
            value: 50.231
          - type: mrr_at_3
            value: 47.601
          - type: mrr_at_5
            value: 48.786
          - type: ndcg_at_1
            value: 41.146
          - type: ndcg_at_10
            value: 48.957
          - type: ndcg_at_100
            value: 53.296
          - type: ndcg_at_1000
            value: 55.254000000000005
          - type: ndcg_at_3
            value: 45.235
          - type: ndcg_at_5
            value: 47.014
          - type: precision_at_1
            value: 41.146
          - type: precision_at_10
            value: 9.107999999999999
          - type: precision_at_100
            value: 1.481
          - type: precision_at_1000
            value: 0.193
          - type: precision_at_3
            value: 21.783
          - type: precision_at_5
            value: 15.274
          - type: recall_at_1
            value: 32.979
          - type: recall_at_10
            value: 58.167
          - type: recall_at_100
            value: 76.374
          - type: recall_at_1000
            value: 88.836
          - type: recall_at_3
            value: 46.838
          - type: recall_at_5
            value: 52.006
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGamingRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.326
          - type: map_at_10
            value: 53.468
          - type: map_at_100
            value: 54.454
          - type: map_at_1000
            value: 54.508
          - type: map_at_3
            value: 50.12799999999999
          - type: map_at_5
            value: 51.991
          - type: mrr_at_1
            value: 46.394999999999996
          - type: mrr_at_10
            value: 57.016999999999996
          - type: mrr_at_100
            value: 57.67099999999999
          - type: mrr_at_1000
            value: 57.699999999999996
          - type: mrr_at_3
            value: 54.65
          - type: mrr_at_5
            value: 56.101
          - type: ndcg_at_1
            value: 46.394999999999996
          - type: ndcg_at_10
            value: 59.507
          - type: ndcg_at_100
            value: 63.31099999999999
          - type: ndcg_at_1000
            value: 64.388
          - type: ndcg_at_3
            value: 54.04600000000001
          - type: ndcg_at_5
            value: 56.723
          - type: precision_at_1
            value: 46.394999999999996
          - type: precision_at_10
            value: 9.567
          - type: precision_at_100
            value: 1.234
          - type: precision_at_1000
            value: 0.13699999999999998
          - type: precision_at_3
            value: 24.117
          - type: precision_at_5
            value: 16.426
          - type: recall_at_1
            value: 40.326
          - type: recall_at_10
            value: 73.763
          - type: recall_at_100
            value: 89.927
          - type: recall_at_1000
            value: 97.509
          - type: recall_at_3
            value: 59.34
          - type: recall_at_5
            value: 65.915
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackGisRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.661
          - type: map_at_10
            value: 35.522
          - type: map_at_100
            value: 36.619
          - type: map_at_1000
            value: 36.693999999999996
          - type: map_at_3
            value: 33.154
          - type: map_at_5
            value: 34.353
          - type: mrr_at_1
            value: 28.362
          - type: mrr_at_10
            value: 37.403999999999996
          - type: mrr_at_100
            value: 38.374
          - type: mrr_at_1000
            value: 38.428000000000004
          - type: mrr_at_3
            value: 35.235
          - type: mrr_at_5
            value: 36.269
          - type: ndcg_at_1
            value: 28.362
          - type: ndcg_at_10
            value: 40.431
          - type: ndcg_at_100
            value: 45.745999999999995
          - type: ndcg_at_1000
            value: 47.493
          - type: ndcg_at_3
            value: 35.733
          - type: ndcg_at_5
            value: 37.722
          - type: precision_at_1
            value: 28.362
          - type: precision_at_10
            value: 6.101999999999999
          - type: precision_at_100
            value: 0.922
          - type: precision_at_1000
            value: 0.11100000000000002
          - type: precision_at_3
            value: 15.140999999999998
          - type: precision_at_5
            value: 10.305
          - type: recall_at_1
            value: 26.661
          - type: recall_at_10
            value: 53.675
          - type: recall_at_100
            value: 77.891
          - type: recall_at_1000
            value: 90.72
          - type: recall_at_3
            value: 40.751
          - type: recall_at_5
            value: 45.517
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackMathematicaRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 18.886
          - type: map_at_10
            value: 27.288
          - type: map_at_100
            value: 28.327999999999996
          - type: map_at_1000
            value: 28.438999999999997
          - type: map_at_3
            value: 24.453
          - type: map_at_5
            value: 25.959
          - type: mrr_at_1
            value: 23.134
          - type: mrr_at_10
            value: 32.004
          - type: mrr_at_100
            value: 32.789
          - type: mrr_at_1000
            value: 32.857
          - type: mrr_at_3
            value: 29.084
          - type: mrr_at_5
            value: 30.614
          - type: ndcg_at_1
            value: 23.134
          - type: ndcg_at_10
            value: 32.852
          - type: ndcg_at_100
            value: 37.972
          - type: ndcg_at_1000
            value: 40.656
          - type: ndcg_at_3
            value: 27.435
          - type: ndcg_at_5
            value: 29.823
          - type: precision_at_1
            value: 23.134
          - type: precision_at_10
            value: 6.032
          - type: precision_at_100
            value: 0.9950000000000001
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 13.017999999999999
          - type: precision_at_5
            value: 9.501999999999999
          - type: recall_at_1
            value: 18.886
          - type: recall_at_10
            value: 45.34
          - type: recall_at_100
            value: 67.947
          - type: recall_at_1000
            value: 86.924
          - type: recall_at_3
            value: 30.535
          - type: recall_at_5
            value: 36.451
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackPhysicsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 28.994999999999997
          - type: map_at_10
            value: 40.04
          - type: map_at_100
            value: 41.435
          - type: map_at_1000
            value: 41.537
          - type: map_at_3
            value: 37.091
          - type: map_at_5
            value: 38.802
          - type: mrr_at_1
            value: 35.034
          - type: mrr_at_10
            value: 45.411
          - type: mrr_at_100
            value: 46.226
          - type: mrr_at_1000
            value: 46.27
          - type: mrr_at_3
            value: 43.086
          - type: mrr_at_5
            value: 44.452999999999996
          - type: ndcg_at_1
            value: 35.034
          - type: ndcg_at_10
            value: 46.076
          - type: ndcg_at_100
            value: 51.483000000000004
          - type: ndcg_at_1000
            value: 53.433
          - type: ndcg_at_3
            value: 41.304
          - type: ndcg_at_5
            value: 43.641999999999996
          - type: precision_at_1
            value: 35.034
          - type: precision_at_10
            value: 8.258000000000001
          - type: precision_at_100
            value: 1.268
          - type: precision_at_1000
            value: 0.161
          - type: precision_at_3
            value: 19.57
          - type: precision_at_5
            value: 13.782
          - type: recall_at_1
            value: 28.994999999999997
          - type: recall_at_10
            value: 58.538000000000004
          - type: recall_at_100
            value: 80.72399999999999
          - type: recall_at_1000
            value: 93.462
          - type: recall_at_3
            value: 45.199
          - type: recall_at_5
            value: 51.237
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackProgrammersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.795
          - type: map_at_10
            value: 34.935
          - type: map_at_100
            value: 36.306
          - type: map_at_1000
            value: 36.417
          - type: map_at_3
            value: 31.831
          - type: map_at_5
            value: 33.626
          - type: mrr_at_1
            value: 30.479
          - type: mrr_at_10
            value: 40.225
          - type: mrr_at_100
            value: 41.055
          - type: mrr_at_1000
            value: 41.114
          - type: mrr_at_3
            value: 37.538
          - type: mrr_at_5
            value: 39.073
          - type: ndcg_at_1
            value: 30.479
          - type: ndcg_at_10
            value: 40.949999999999996
          - type: ndcg_at_100
            value: 46.525
          - type: ndcg_at_1000
            value: 48.892
          - type: ndcg_at_3
            value: 35.79
          - type: ndcg_at_5
            value: 38.237
          - type: precision_at_1
            value: 30.479
          - type: precision_at_10
            value: 7.6259999999999994
          - type: precision_at_100
            value: 1.203
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 17.199
          - type: precision_at_5
            value: 12.466000000000001
          - type: recall_at_1
            value: 24.795
          - type: recall_at_10
            value: 53.421
          - type: recall_at_100
            value: 77.189
          - type: recall_at_1000
            value: 93.407
          - type: recall_at_3
            value: 39.051
          - type: recall_at_5
            value: 45.462
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 26.853499999999997
          - type: map_at_10
            value: 36.20433333333333
          - type: map_at_100
            value: 37.40391666666667
          - type: map_at_1000
            value: 37.515
          - type: map_at_3
            value: 33.39975
          - type: map_at_5
            value: 34.9665
          - type: mrr_at_1
            value: 31.62666666666667
          - type: mrr_at_10
            value: 40.436749999999996
          - type: mrr_at_100
            value: 41.260333333333335
          - type: mrr_at_1000
            value: 41.31525
          - type: mrr_at_3
            value: 38.06733333333332
          - type: mrr_at_5
            value: 39.41541666666667
          - type: ndcg_at_1
            value: 31.62666666666667
          - type: ndcg_at_10
            value: 41.63341666666667
          - type: ndcg_at_100
            value: 46.704166666666666
          - type: ndcg_at_1000
            value: 48.88483333333335
          - type: ndcg_at_3
            value: 36.896
          - type: ndcg_at_5
            value: 39.11891666666667
          - type: precision_at_1
            value: 31.62666666666667
          - type: precision_at_10
            value: 7.241083333333333
          - type: precision_at_100
            value: 1.1488333333333334
          - type: precision_at_1000
            value: 0.15250000000000002
          - type: precision_at_3
            value: 16.908333333333335
          - type: precision_at_5
            value: 11.942833333333333
          - type: recall_at_1
            value: 26.853499999999997
          - type: recall_at_10
            value: 53.461333333333336
          - type: recall_at_100
            value: 75.63633333333333
          - type: recall_at_1000
            value: 90.67016666666666
          - type: recall_at_3
            value: 40.24241666666667
          - type: recall_at_5
            value: 45.98608333333333
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackStatsRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 25.241999999999997
          - type: map_at_10
            value: 31.863999999999997
          - type: map_at_100
            value: 32.835
          - type: map_at_1000
            value: 32.928000000000004
          - type: map_at_3
            value: 29.694
          - type: map_at_5
            value: 30.978
          - type: mrr_at_1
            value: 28.374
          - type: mrr_at_10
            value: 34.814
          - type: mrr_at_100
            value: 35.596
          - type: mrr_at_1000
            value: 35.666
          - type: mrr_at_3
            value: 32.745000000000005
          - type: mrr_at_5
            value: 34.049
          - type: ndcg_at_1
            value: 28.374
          - type: ndcg_at_10
            value: 35.969
          - type: ndcg_at_100
            value: 40.708
          - type: ndcg_at_1000
            value: 43.08
          - type: ndcg_at_3
            value: 31.968999999999998
          - type: ndcg_at_5
            value: 34.069
          - type: precision_at_1
            value: 28.374
          - type: precision_at_10
            value: 5.583
          - type: precision_at_100
            value: 0.8630000000000001
          - type: precision_at_1000
            value: 0.11299999999999999
          - type: precision_at_3
            value: 13.547999999999998
          - type: precision_at_5
            value: 9.447999999999999
          - type: recall_at_1
            value: 25.241999999999997
          - type: recall_at_10
            value: 45.711
          - type: recall_at_100
            value: 67.482
          - type: recall_at_1000
            value: 85.13300000000001
          - type: recall_at_3
            value: 34.622
          - type: recall_at_5
            value: 40.043
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackTexRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 17.488999999999997
          - type: map_at_10
            value: 25.142999999999997
          - type: map_at_100
            value: 26.244
          - type: map_at_1000
            value: 26.363999999999997
          - type: map_at_3
            value: 22.654
          - type: map_at_5
            value: 24.017
          - type: mrr_at_1
            value: 21.198
          - type: mrr_at_10
            value: 28.903000000000002
          - type: mrr_at_100
            value: 29.860999999999997
          - type: mrr_at_1000
            value: 29.934
          - type: mrr_at_3
            value: 26.634999999999998
          - type: mrr_at_5
            value: 27.903
          - type: ndcg_at_1
            value: 21.198
          - type: ndcg_at_10
            value: 29.982999999999997
          - type: ndcg_at_100
            value: 35.275
          - type: ndcg_at_1000
            value: 38.074000000000005
          - type: ndcg_at_3
            value: 25.502999999999997
          - type: ndcg_at_5
            value: 27.557
          - type: precision_at_1
            value: 21.198
          - type: precision_at_10
            value: 5.502
          - type: precision_at_100
            value: 0.942
          - type: precision_at_1000
            value: 0.136
          - type: precision_at_3
            value: 12.044
          - type: precision_at_5
            value: 8.782
          - type: recall_at_1
            value: 17.488999999999997
          - type: recall_at_10
            value: 40.821000000000005
          - type: recall_at_100
            value: 64.567
          - type: recall_at_1000
            value: 84.452
          - type: recall_at_3
            value: 28.351
          - type: recall_at_5
            value: 33.645
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackUnixRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 27.066000000000003
          - type: map_at_10
            value: 36.134
          - type: map_at_100
            value: 37.285000000000004
          - type: map_at_1000
            value: 37.389
          - type: map_at_3
            value: 33.522999999999996
          - type: map_at_5
            value: 34.905
          - type: mrr_at_1
            value: 31.436999999999998
          - type: mrr_at_10
            value: 40.225
          - type: mrr_at_100
            value: 41.079
          - type: mrr_at_1000
            value: 41.138000000000005
          - type: mrr_at_3
            value: 38.074999999999996
          - type: mrr_at_5
            value: 39.190000000000005
          - type: ndcg_at_1
            value: 31.436999999999998
          - type: ndcg_at_10
            value: 41.494
          - type: ndcg_at_100
            value: 46.678999999999995
          - type: ndcg_at_1000
            value: 48.964
          - type: ndcg_at_3
            value: 36.828
          - type: ndcg_at_5
            value: 38.789
          - type: precision_at_1
            value: 31.436999999999998
          - type: precision_at_10
            value: 6.931
          - type: precision_at_100
            value: 1.072
          - type: precision_at_1000
            value: 0.13799999999999998
          - type: precision_at_3
            value: 16.729
          - type: precision_at_5
            value: 11.567
          - type: recall_at_1
            value: 27.066000000000003
          - type: recall_at_10
            value: 53.705000000000005
          - type: recall_at_100
            value: 75.968
          - type: recall_at_1000
            value: 91.937
          - type: recall_at_3
            value: 40.865
          - type: recall_at_5
            value: 45.739999999999995
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWebmastersRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 24.979000000000003
          - type: map_at_10
            value: 32.799
          - type: map_at_100
            value: 34.508
          - type: map_at_1000
            value: 34.719
          - type: map_at_3
            value: 29.947000000000003
          - type: map_at_5
            value: 31.584
          - type: mrr_at_1
            value: 30.237000000000002
          - type: mrr_at_10
            value: 37.651
          - type: mrr_at_100
            value: 38.805
          - type: mrr_at_1000
            value: 38.851
          - type: mrr_at_3
            value: 35.046
          - type: mrr_at_5
            value: 36.548
          - type: ndcg_at_1
            value: 30.237000000000002
          - type: ndcg_at_10
            value: 38.356
          - type: ndcg_at_100
            value: 44.906
          - type: ndcg_at_1000
            value: 47.299
          - type: ndcg_at_3
            value: 33.717999999999996
          - type: ndcg_at_5
            value: 35.946
          - type: precision_at_1
            value: 30.237000000000002
          - type: precision_at_10
            value: 7.292
          - type: precision_at_100
            value: 1.496
          - type: precision_at_1000
            value: 0.23600000000000002
          - type: precision_at_3
            value: 15.547
          - type: precision_at_5
            value: 11.344
          - type: recall_at_1
            value: 24.979000000000003
          - type: recall_at_10
            value: 48.624
          - type: recall_at_100
            value: 77.932
          - type: recall_at_1000
            value: 92.66499999999999
          - type: recall_at_3
            value: 35.217
          - type: recall_at_5
            value: 41.394
      - task:
          type: Retrieval
        dataset:
          type: BeIR/cqadupstack
          name: MTEB CQADupstackWordpressRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.566
          - type: map_at_10
            value: 30.945
          - type: map_at_100
            value: 31.759999999999998
          - type: map_at_1000
            value: 31.855
          - type: map_at_3
            value: 28.64
          - type: map_at_5
            value: 29.787000000000003
          - type: mrr_at_1
            value: 24.954
          - type: mrr_at_10
            value: 33.311
          - type: mrr_at_100
            value: 34.050000000000004
          - type: mrr_at_1000
            value: 34.117999999999995
          - type: mrr_at_3
            value: 31.238
          - type: mrr_at_5
            value: 32.329
          - type: ndcg_at_1
            value: 24.954
          - type: ndcg_at_10
            value: 35.676
          - type: ndcg_at_100
            value: 39.931
          - type: ndcg_at_1000
            value: 42.43
          - type: ndcg_at_3
            value: 31.365
          - type: ndcg_at_5
            value: 33.184999999999995
          - type: precision_at_1
            value: 24.954
          - type: precision_at_10
            value: 5.564
          - type: precision_at_100
            value: 0.826
          - type: precision_at_1000
            value: 0.116
          - type: precision_at_3
            value: 13.555
          - type: precision_at_5
            value: 9.168
          - type: recall_at_1
            value: 22.566
          - type: recall_at_10
            value: 47.922
          - type: recall_at_100
            value: 67.931
          - type: recall_at_1000
            value: 86.653
          - type: recall_at_3
            value: 36.103
          - type: recall_at_5
            value: 40.699000000000005
      - task:
          type: Retrieval
        dataset:
          type: climate-fever
          name: MTEB ClimateFEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 16.950000000000003
          - type: map_at_10
            value: 28.612
          - type: map_at_100
            value: 30.476999999999997
          - type: map_at_1000
            value: 30.674
          - type: map_at_3
            value: 24.262
          - type: map_at_5
            value: 26.554
          - type: mrr_at_1
            value: 38.241
          - type: mrr_at_10
            value: 50.43
          - type: mrr_at_100
            value: 51.059
          - type: mrr_at_1000
            value: 51.090999999999994
          - type: mrr_at_3
            value: 47.514
          - type: mrr_at_5
            value: 49.246
          - type: ndcg_at_1
            value: 38.241
          - type: ndcg_at_10
            value: 38.218
          - type: ndcg_at_100
            value: 45.003
          - type: ndcg_at_1000
            value: 48.269
          - type: ndcg_at_3
            value: 32.568000000000005
          - type: ndcg_at_5
            value: 34.400999999999996
          - type: precision_at_1
            value: 38.241
          - type: precision_at_10
            value: 11.674
          - type: precision_at_100
            value: 1.913
          - type: precision_at_1000
            value: 0.252
          - type: precision_at_3
            value: 24.387
          - type: precision_at_5
            value: 18.163
          - type: recall_at_1
            value: 16.950000000000003
          - type: recall_at_10
            value: 43.769000000000005
          - type: recall_at_100
            value: 66.875
          - type: recall_at_1000
            value: 84.92699999999999
          - type: recall_at_3
            value: 29.353
          - type: recall_at_5
            value: 35.467
      - task:
          type: Retrieval
        dataset:
          type: dbpedia-entity
          name: MTEB DBPedia
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 9.276
          - type: map_at_10
            value: 20.848
          - type: map_at_100
            value: 29.804000000000002
          - type: map_at_1000
            value: 31.398
          - type: map_at_3
            value: 14.886
          - type: map_at_5
            value: 17.516000000000002
          - type: mrr_at_1
            value: 71
          - type: mrr_at_10
            value: 78.724
          - type: mrr_at_100
            value: 78.976
          - type: mrr_at_1000
            value: 78.986
          - type: mrr_at_3
            value: 77.333
          - type: mrr_at_5
            value: 78.021
          - type: ndcg_at_1
            value: 57.875
          - type: ndcg_at_10
            value: 43.855
          - type: ndcg_at_100
            value: 48.99
          - type: ndcg_at_1000
            value: 56.141
          - type: ndcg_at_3
            value: 48.914
          - type: ndcg_at_5
            value: 45.961
          - type: precision_at_1
            value: 71
          - type: precision_at_10
            value: 34.575
          - type: precision_at_100
            value: 11.182
          - type: precision_at_1000
            value: 2.044
          - type: precision_at_3
            value: 52.5
          - type: precision_at_5
            value: 44.2
          - type: recall_at_1
            value: 9.276
          - type: recall_at_10
            value: 26.501
          - type: recall_at_100
            value: 55.72899999999999
          - type: recall_at_1000
            value: 78.532
          - type: recall_at_3
            value: 16.365
          - type: recall_at_5
            value: 20.154
      - task:
          type: Classification
        dataset:
          type: mteb/emotion
          name: MTEB EmotionClassification
          config: default
          split: test
          revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
        metrics:
          - type: accuracy
            value: 53.400000000000006
          - type: f1
            value: 48.55192863364752
      - task:
          type: Retrieval
        dataset:
          type: fever
          name: MTEB FEVER
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 73.405
          - type: map_at_10
            value: 82.822
          - type: map_at_100
            value: 83.042
          - type: map_at_1000
            value: 83.055
          - type: map_at_3
            value: 81.65299999999999
          - type: map_at_5
            value: 82.431
          - type: mrr_at_1
            value: 79.178
          - type: mrr_at_10
            value: 87.02
          - type: mrr_at_100
            value: 87.095
          - type: mrr_at_1000
            value: 87.09700000000001
          - type: mrr_at_3
            value: 86.309
          - type: mrr_at_5
            value: 86.824
          - type: ndcg_at_1
            value: 79.178
          - type: ndcg_at_10
            value: 86.72
          - type: ndcg_at_100
            value: 87.457
          - type: ndcg_at_1000
            value: 87.691
          - type: ndcg_at_3
            value: 84.974
          - type: ndcg_at_5
            value: 86.032
          - type: precision_at_1
            value: 79.178
          - type: precision_at_10
            value: 10.548
          - type: precision_at_100
            value: 1.113
          - type: precision_at_1000
            value: 0.11499999999999999
          - type: precision_at_3
            value: 32.848
          - type: precision_at_5
            value: 20.45
          - type: recall_at_1
            value: 73.405
          - type: recall_at_10
            value: 94.39699999999999
          - type: recall_at_100
            value: 97.219
          - type: recall_at_1000
            value: 98.675
          - type: recall_at_3
            value: 89.679
          - type: recall_at_5
            value: 92.392
      - task:
          type: Retrieval
        dataset:
          type: fiqa
          name: MTEB FiQA2018
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 22.651
          - type: map_at_10
            value: 36.886
          - type: map_at_100
            value: 38.811
          - type: map_at_1000
            value: 38.981
          - type: map_at_3
            value: 32.538
          - type: map_at_5
            value: 34.763
          - type: mrr_at_1
            value: 44.444
          - type: mrr_at_10
            value: 53.168000000000006
          - type: mrr_at_100
            value: 53.839000000000006
          - type: mrr_at_1000
            value: 53.869
          - type: mrr_at_3
            value: 50.54
          - type: mrr_at_5
            value: 52.068000000000005
          - type: ndcg_at_1
            value: 44.444
          - type: ndcg_at_10
            value: 44.994
          - type: ndcg_at_100
            value: 51.599
          - type: ndcg_at_1000
            value: 54.339999999999996
          - type: ndcg_at_3
            value: 41.372
          - type: ndcg_at_5
            value: 42.149
          - type: precision_at_1
            value: 44.444
          - type: precision_at_10
            value: 12.407
          - type: precision_at_100
            value: 1.9269999999999998
          - type: precision_at_1000
            value: 0.242
          - type: precision_at_3
            value: 27.726
          - type: precision_at_5
            value: 19.814999999999998
          - type: recall_at_1
            value: 22.651
          - type: recall_at_10
            value: 52.075
          - type: recall_at_100
            value: 76.51400000000001
          - type: recall_at_1000
            value: 92.852
          - type: recall_at_3
            value: 37.236000000000004
          - type: recall_at_5
            value: 43.175999999999995
      - task:
          type: Retrieval
        dataset:
          type: hotpotqa
          name: MTEB HotpotQA
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 40.777
          - type: map_at_10
            value: 66.79899999999999
          - type: map_at_100
            value: 67.65299999999999
          - type: map_at_1000
            value: 67.706
          - type: map_at_3
            value: 63.352
          - type: map_at_5
            value: 65.52900000000001
          - type: mrr_at_1
            value: 81.553
          - type: mrr_at_10
            value: 86.983
          - type: mrr_at_100
            value: 87.132
          - type: mrr_at_1000
            value: 87.136
          - type: mrr_at_3
            value: 86.156
          - type: mrr_at_5
            value: 86.726
          - type: ndcg_at_1
            value: 81.553
          - type: ndcg_at_10
            value: 74.64
          - type: ndcg_at_100
            value: 77.459
          - type: ndcg_at_1000
            value: 78.43
          - type: ndcg_at_3
            value: 69.878
          - type: ndcg_at_5
            value: 72.59400000000001
          - type: precision_at_1
            value: 81.553
          - type: precision_at_10
            value: 15.654000000000002
          - type: precision_at_100
            value: 1.783
          - type: precision_at_1000
            value: 0.191
          - type: precision_at_3
            value: 45.199
          - type: precision_at_5
            value: 29.267
          - type: recall_at_1
            value: 40.777
          - type: recall_at_10
            value: 78.271
          - type: recall_at_100
            value: 89.129
          - type: recall_at_1000
            value: 95.49
          - type: recall_at_3
            value: 67.79899999999999
          - type: recall_at_5
            value: 73.167
      - task:
          type: Classification
        dataset:
          type: mteb/imdb
          name: MTEB ImdbClassification
          config: default
          split: test
          revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
        metrics:
          - type: accuracy
            value: 93.724
          - type: ap
            value: 90.62951630330716
          - type: f1
            value: 93.7196637416671
      - task:
          type: Retrieval
        dataset:
          type: msmarco
          name: MTEB MSMARCO
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 23.301
          - type: map_at_10
            value: 35.657
          - type: map_at_100
            value: 36.797000000000004
          - type: map_at_1000
            value: 36.844
          - type: map_at_3
            value: 31.743
          - type: map_at_5
            value: 34.003
          - type: mrr_at_1
            value: 23.854
          - type: mrr_at_10
            value: 36.242999999999995
          - type: mrr_at_100
            value: 37.32
          - type: mrr_at_1000
            value: 37.361
          - type: mrr_at_3
            value: 32.4
          - type: mrr_at_5
            value: 34.634
          - type: ndcg_at_1
            value: 23.868000000000002
          - type: ndcg_at_10
            value: 42.589
          - type: ndcg_at_100
            value: 48.031
          - type: ndcg_at_1000
            value: 49.189
          - type: ndcg_at_3
            value: 34.649
          - type: ndcg_at_5
            value: 38.676
          - type: precision_at_1
            value: 23.868000000000002
          - type: precision_at_10
            value: 6.6850000000000005
          - type: precision_at_100
            value: 0.9400000000000001
          - type: precision_at_1000
            value: 0.104
          - type: precision_at_3
            value: 14.651
          - type: precision_at_5
            value: 10.834000000000001
          - type: recall_at_1
            value: 23.301
          - type: recall_at_10
            value: 63.88700000000001
          - type: recall_at_100
            value: 88.947
          - type: recall_at_1000
            value: 97.783
          - type: recall_at_3
            value: 42.393
          - type: recall_at_5
            value: 52.036
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_domain
          name: MTEB MTOPDomainClassification (en)
          config: en
          split: test
          revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
        metrics:
          - type: accuracy
            value: 94.67624259005929
          - type: f1
            value: 94.43953546498719
      - task:
          type: Classification
        dataset:
          type: mteb/mtop_intent
          name: MTEB MTOPIntentClassification (en)
          config: en
          split: test
          revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
        metrics:
          - type: accuracy
            value: 79.89512083903328
          - type: f1
            value: 61.64282062596609
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (en)
          config: en
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 79.58305312710155
          - type: f1
            value: 77.32463609252174
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (en)
          config: en
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 81.8897108271688
          - type: f1
            value: 81.67334926430276
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-p2p
          name: MTEB MedrxivClusteringP2P
          config: default
          split: test
          revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
        metrics:
          - type: v_measure
            value: 36.31529875009507
      - task:
          type: Clustering
        dataset:
          type: mteb/medrxiv-clustering-s2s
          name: MTEB MedrxivClusteringS2S
          config: default
          split: test
          revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
        metrics:
          - type: v_measure
            value: 31.734233714415073
      - task:
          type: Reranking
        dataset:
          type: mteb/mind_small
          name: MTEB MindSmallReranking
          config: default
          split: test
          revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
        metrics:
          - type: map
            value: 30.994501713009452
          - type: mrr
            value: 32.13512850703073
      - task:
          type: Retrieval
        dataset:
          type: nfcorpus
          name: MTEB NFCorpus
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 6.603000000000001
          - type: map_at_10
            value: 13.767999999999999
          - type: map_at_100
            value: 17.197000000000003
          - type: map_at_1000
            value: 18.615000000000002
          - type: map_at_3
            value: 10.567
          - type: map_at_5
            value: 12.078999999999999
          - type: mrr_at_1
            value: 44.891999999999996
          - type: mrr_at_10
            value: 53.75299999999999
          - type: mrr_at_100
            value: 54.35
          - type: mrr_at_1000
            value: 54.388000000000005
          - type: mrr_at_3
            value: 51.495999999999995
          - type: mrr_at_5
            value: 52.688
          - type: ndcg_at_1
            value: 43.189
          - type: ndcg_at_10
            value: 34.567
          - type: ndcg_at_100
            value: 32.273
          - type: ndcg_at_1000
            value: 41.321999999999996
          - type: ndcg_at_3
            value: 40.171
          - type: ndcg_at_5
            value: 37.502
          - type: precision_at_1
            value: 44.582
          - type: precision_at_10
            value: 25.139
          - type: precision_at_100
            value: 7.739999999999999
          - type: precision_at_1000
            value: 2.054
          - type: precision_at_3
            value: 37.152
          - type: precision_at_5
            value: 31.826999999999998
          - type: recall_at_1
            value: 6.603000000000001
          - type: recall_at_10
            value: 17.023
          - type: recall_at_100
            value: 32.914
          - type: recall_at_1000
            value: 64.44800000000001
          - type: recall_at_3
            value: 11.457
          - type: recall_at_5
            value: 13.816
      - task:
          type: Retrieval
        dataset:
          type: nq
          name: MTEB NQ
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 30.026000000000003
          - type: map_at_10
            value: 45.429
          - type: map_at_100
            value: 46.45
          - type: map_at_1000
            value: 46.478
          - type: map_at_3
            value: 41.147
          - type: map_at_5
            value: 43.627
          - type: mrr_at_1
            value: 33.951
          - type: mrr_at_10
            value: 47.953
          - type: mrr_at_100
            value: 48.731
          - type: mrr_at_1000
            value: 48.751
          - type: mrr_at_3
            value: 44.39
          - type: mrr_at_5
            value: 46.533
          - type: ndcg_at_1
            value: 33.951
          - type: ndcg_at_10
            value: 53.24100000000001
          - type: ndcg_at_100
            value: 57.599999999999994
          - type: ndcg_at_1000
            value: 58.270999999999994
          - type: ndcg_at_3
            value: 45.190999999999995
          - type: ndcg_at_5
            value: 49.339
          - type: precision_at_1
            value: 33.951
          - type: precision_at_10
            value: 8.856
          - type: precision_at_100
            value: 1.133
          - type: precision_at_1000
            value: 0.12
          - type: precision_at_3
            value: 20.713
          - type: precision_at_5
            value: 14.838000000000001
          - type: recall_at_1
            value: 30.026000000000003
          - type: recall_at_10
            value: 74.512
          - type: recall_at_100
            value: 93.395
          - type: recall_at_1000
            value: 98.402
          - type: recall_at_3
            value: 53.677
          - type: recall_at_5
            value: 63.198
      - task:
          type: Retrieval
        dataset:
          type: quora
          name: MTEB QuoraRetrieval
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 71.41300000000001
          - type: map_at_10
            value: 85.387
          - type: map_at_100
            value: 86.027
          - type: map_at_1000
            value: 86.041
          - type: map_at_3
            value: 82.543
          - type: map_at_5
            value: 84.304
          - type: mrr_at_1
            value: 82.35
          - type: mrr_at_10
            value: 88.248
          - type: mrr_at_100
            value: 88.348
          - type: mrr_at_1000
            value: 88.349
          - type: mrr_at_3
            value: 87.348
          - type: mrr_at_5
            value: 87.96300000000001
          - type: ndcg_at_1
            value: 82.37
          - type: ndcg_at_10
            value: 88.98
          - type: ndcg_at_100
            value: 90.16499999999999
          - type: ndcg_at_1000
            value: 90.239
          - type: ndcg_at_3
            value: 86.34100000000001
          - type: ndcg_at_5
            value: 87.761
          - type: precision_at_1
            value: 82.37
          - type: precision_at_10
            value: 13.471
          - type: precision_at_100
            value: 1.534
          - type: precision_at_1000
            value: 0.157
          - type: precision_at_3
            value: 37.827
          - type: precision_at_5
            value: 24.773999999999997
          - type: recall_at_1
            value: 71.41300000000001
          - type: recall_at_10
            value: 95.748
          - type: recall_at_100
            value: 99.69200000000001
          - type: recall_at_1000
            value: 99.98
          - type: recall_at_3
            value: 87.996
          - type: recall_at_5
            value: 92.142
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering
          name: MTEB RedditClustering
          config: default
          split: test
          revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
        metrics:
          - type: v_measure
            value: 56.96878497780007
      - task:
          type: Clustering
        dataset:
          type: mteb/reddit-clustering-p2p
          name: MTEB RedditClusteringP2P
          config: default
          split: test
          revision: 282350215ef01743dc01b456c7f5241fa8937f16
        metrics:
          - type: v_measure
            value: 65.31371347128074
      - task:
          type: Retrieval
        dataset:
          type: scidocs
          name: MTEB SCIDOCS
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 5.287
          - type: map_at_10
            value: 13.530000000000001
          - type: map_at_100
            value: 15.891
          - type: map_at_1000
            value: 16.245
          - type: map_at_3
            value: 9.612
          - type: map_at_5
            value: 11.672
          - type: mrr_at_1
            value: 26
          - type: mrr_at_10
            value: 37.335
          - type: mrr_at_100
            value: 38.443
          - type: mrr_at_1000
            value: 38.486
          - type: mrr_at_3
            value: 33.783
          - type: mrr_at_5
            value: 36.028
          - type: ndcg_at_1
            value: 26
          - type: ndcg_at_10
            value: 22.215
          - type: ndcg_at_100
            value: 31.101
          - type: ndcg_at_1000
            value: 36.809
          - type: ndcg_at_3
            value: 21.104
          - type: ndcg_at_5
            value: 18.759999999999998
          - type: precision_at_1
            value: 26
          - type: precision_at_10
            value: 11.43
          - type: precision_at_100
            value: 2.424
          - type: precision_at_1000
            value: 0.379
          - type: precision_at_3
            value: 19.7
          - type: precision_at_5
            value: 16.619999999999997
          - type: recall_at_1
            value: 5.287
          - type: recall_at_10
            value: 23.18
          - type: recall_at_100
            value: 49.208
          - type: recall_at_1000
            value: 76.85300000000001
          - type: recall_at_3
            value: 11.991999999999999
          - type: recall_at_5
            value: 16.85
      - task:
          type: STS
        dataset:
          type: mteb/sickr-sts
          name: MTEB SICK-R
          config: default
          split: test
          revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
        metrics:
          - type: cos_sim_pearson
            value: 83.87834913790886
          - type: cos_sim_spearman
            value: 81.04583513112122
          - type: euclidean_pearson
            value: 81.20484174558065
          - type: euclidean_spearman
            value: 80.76430832561769
          - type: manhattan_pearson
            value: 81.21416730978615
          - type: manhattan_spearman
            value: 80.7797637394211
      - task:
          type: STS
        dataset:
          type: mteb/sts12-sts
          name: MTEB STS12
          config: default
          split: test
          revision: a0d554a64d88156834ff5ae9920b964011b16384
        metrics:
          - type: cos_sim_pearson
            value: 86.56143998865157
          - type: cos_sim_spearman
            value: 79.75387012744471
          - type: euclidean_pearson
            value: 83.7877519997019
          - type: euclidean_spearman
            value: 79.90489748003296
          - type: manhattan_pearson
            value: 83.7540590666095
          - type: manhattan_spearman
            value: 79.86434577931573
      - task:
          type: STS
        dataset:
          type: mteb/sts13-sts
          name: MTEB STS13
          config: default
          split: test
          revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
        metrics:
          - type: cos_sim_pearson
            value: 83.92102564177941
          - type: cos_sim_spearman
            value: 84.98234585939103
          - type: euclidean_pearson
            value: 84.47729567593696
          - type: euclidean_spearman
            value: 85.09490696194469
          - type: manhattan_pearson
            value: 84.38622951588229
          - type: manhattan_spearman
            value: 85.02507171545574
      - task:
          type: STS
        dataset:
          type: mteb/sts14-sts
          name: MTEB STS14
          config: default
          split: test
          revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
        metrics:
          - type: cos_sim_pearson
            value: 80.1891164763377
          - type: cos_sim_spearman
            value: 80.7997969966883
          - type: euclidean_pearson
            value: 80.48572256162396
          - type: euclidean_spearman
            value: 80.57851903536378
          - type: manhattan_pearson
            value: 80.4324819433651
          - type: manhattan_spearman
            value: 80.5074526239062
      - task:
          type: STS
        dataset:
          type: mteb/sts15-sts
          name: MTEB STS15
          config: default
          split: test
          revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
        metrics:
          - type: cos_sim_pearson
            value: 82.64319975116025
          - type: cos_sim_spearman
            value: 84.88671197763652
          - type: euclidean_pearson
            value: 84.74692193293231
          - type: euclidean_spearman
            value: 85.27151722073653
          - type: manhattan_pearson
            value: 84.72460516785438
          - type: manhattan_spearman
            value: 85.26518899786687
      - task:
          type: STS
        dataset:
          type: mteb/sts16-sts
          name: MTEB STS16
          config: default
          split: test
          revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
        metrics:
          - type: cos_sim_pearson
            value: 83.24687565822381
          - type: cos_sim_spearman
            value: 85.60418454111263
          - type: euclidean_pearson
            value: 84.85829740169851
          - type: euclidean_spearman
            value: 85.66378014138306
          - type: manhattan_pearson
            value: 84.84672408808835
          - type: manhattan_spearman
            value: 85.63331924364891
      - task:
          type: STS
        dataset:
          type: mteb/sts17-crosslingual-sts
          name: MTEB STS17 (en-en)
          config: en-en
          split: test
          revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
        metrics:
          - type: cos_sim_pearson
            value: 84.87758895415485
          - type: cos_sim_spearman
            value: 85.8193745617297
          - type: euclidean_pearson
            value: 85.78719118848134
          - type: euclidean_spearman
            value: 84.35797575385688
          - type: manhattan_pearson
            value: 85.97919844815692
          - type: manhattan_spearman
            value: 84.58334745175151
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (en)
          config: en
          split: test
          revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
        metrics:
          - type: cos_sim_pearson
            value: 67.27076035963599
          - type: cos_sim_spearman
            value: 67.21433656439973
          - type: euclidean_pearson
            value: 68.07434078679324
          - type: euclidean_spearman
            value: 66.0249731719049
          - type: manhattan_pearson
            value: 67.95495198947476
          - type: manhattan_spearman
            value: 65.99893908331886
      - task:
          type: STS
        dataset:
          type: mteb/stsbenchmark-sts
          name: MTEB STSBenchmark
          config: default
          split: test
          revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
        metrics:
          - type: cos_sim_pearson
            value: 82.22437747056817
          - type: cos_sim_spearman
            value: 85.0995685206174
          - type: euclidean_pearson
            value: 84.08616925603394
          - type: euclidean_spearman
            value: 84.89633925691658
          - type: manhattan_pearson
            value: 84.08332675923133
          - type: manhattan_spearman
            value: 84.8858228112915
      - task:
          type: Reranking
        dataset:
          type: mteb/scidocs-reranking
          name: MTEB SciDocsRR
          config: default
          split: test
          revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
        metrics:
          - type: map
            value: 87.6909022589666
          - type: mrr
            value: 96.43341952165481
      - task:
          type: Retrieval
        dataset:
          type: scifact
          name: MTEB SciFact
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 57.660999999999994
          - type: map_at_10
            value: 67.625
          - type: map_at_100
            value: 68.07600000000001
          - type: map_at_1000
            value: 68.10199999999999
          - type: map_at_3
            value: 64.50399999999999
          - type: map_at_5
            value: 66.281
          - type: mrr_at_1
            value: 61
          - type: mrr_at_10
            value: 68.953
          - type: mrr_at_100
            value: 69.327
          - type: mrr_at_1000
            value: 69.352
          - type: mrr_at_3
            value: 66.833
          - type: mrr_at_5
            value: 68.05
          - type: ndcg_at_1
            value: 61
          - type: ndcg_at_10
            value: 72.369
          - type: ndcg_at_100
            value: 74.237
          - type: ndcg_at_1000
            value: 74.939
          - type: ndcg_at_3
            value: 67.284
          - type: ndcg_at_5
            value: 69.72500000000001
          - type: precision_at_1
            value: 61
          - type: precision_at_10
            value: 9.733
          - type: precision_at_100
            value: 1.0670000000000002
          - type: precision_at_1000
            value: 0.11199999999999999
          - type: precision_at_3
            value: 26.222
          - type: precision_at_5
            value: 17.4
          - type: recall_at_1
            value: 57.660999999999994
          - type: recall_at_10
            value: 85.656
          - type: recall_at_100
            value: 93.833
          - type: recall_at_1000
            value: 99.333
          - type: recall_at_3
            value: 71.961
          - type: recall_at_5
            value: 78.094
      - task:
          type: PairClassification
        dataset:
          type: mteb/sprintduplicatequestions-pairclassification
          name: MTEB SprintDuplicateQuestions
          config: default
          split: test
          revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
        metrics:
          - type: cos_sim_accuracy
            value: 99.86930693069307
          - type: cos_sim_ap
            value: 96.76685487950894
          - type: cos_sim_f1
            value: 93.44587884806354
          - type: cos_sim_precision
            value: 92.80078895463511
          - type: cos_sim_recall
            value: 94.1
          - type: dot_accuracy
            value: 99.54356435643564
          - type: dot_ap
            value: 81.18659960405607
          - type: dot_f1
            value: 75.78008915304605
          - type: dot_precision
            value: 75.07360157016683
          - type: dot_recall
            value: 76.5
          - type: euclidean_accuracy
            value: 99.87326732673267
          - type: euclidean_ap
            value: 96.8102411908941
          - type: euclidean_f1
            value: 93.6127744510978
          - type: euclidean_precision
            value: 93.42629482071713
          - type: euclidean_recall
            value: 93.8
          - type: manhattan_accuracy
            value: 99.87425742574257
          - type: manhattan_ap
            value: 96.82857341435529
          - type: manhattan_f1
            value: 93.62129583124059
          - type: manhattan_precision
            value: 94.04641775983855
          - type: manhattan_recall
            value: 93.2
          - type: max_accuracy
            value: 99.87425742574257
          - type: max_ap
            value: 96.82857341435529
          - type: max_f1
            value: 93.62129583124059
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering
          name: MTEB StackExchangeClustering
          config: default
          split: test
          revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
        metrics:
          - type: v_measure
            value: 65.92560972698926
      - task:
          type: Clustering
        dataset:
          type: mteb/stackexchange-clustering-p2p
          name: MTEB StackExchangeClusteringP2P
          config: default
          split: test
          revision: 815ca46b2622cec33ccafc3735d572c266efdb44
        metrics:
          - type: v_measure
            value: 34.92797240259008
      - task:
          type: Reranking
        dataset:
          type: mteb/stackoverflowdupquestions-reranking
          name: MTEB StackOverflowDupQuestions
          config: default
          split: test
          revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
        metrics:
          - type: map
            value: 55.244624045597654
          - type: mrr
            value: 56.185303666921314
      - task:
          type: Summarization
        dataset:
          type: mteb/summeval
          name: MTEB SummEval
          config: default
          split: test
          revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
        metrics:
          - type: cos_sim_pearson
            value: 31.02491987312937
          - type: cos_sim_spearman
            value: 32.055592206679734
          - type: dot_pearson
            value: 24.731627575422557
          - type: dot_spearman
            value: 24.308029077069733
      - task:
          type: Retrieval
        dataset:
          type: trec-covid
          name: MTEB TRECCOVID
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 0.231
          - type: map_at_10
            value: 1.899
          - type: map_at_100
            value: 9.498
          - type: map_at_1000
            value: 20.979999999999997
          - type: map_at_3
            value: 0.652
          - type: map_at_5
            value: 1.069
          - type: mrr_at_1
            value: 88
          - type: mrr_at_10
            value: 93.4
          - type: mrr_at_100
            value: 93.4
          - type: mrr_at_1000
            value: 93.4
          - type: mrr_at_3
            value: 93
          - type: mrr_at_5
            value: 93.4
          - type: ndcg_at_1
            value: 86
          - type: ndcg_at_10
            value: 75.375
          - type: ndcg_at_100
            value: 52.891999999999996
          - type: ndcg_at_1000
            value: 44.952999999999996
          - type: ndcg_at_3
            value: 81.05
          - type: ndcg_at_5
            value: 80.175
          - type: precision_at_1
            value: 88
          - type: precision_at_10
            value: 79
          - type: precision_at_100
            value: 53.16
          - type: precision_at_1000
            value: 19.408
          - type: precision_at_3
            value: 85.333
          - type: precision_at_5
            value: 84
          - type: recall_at_1
            value: 0.231
          - type: recall_at_10
            value: 2.078
          - type: recall_at_100
            value: 12.601
          - type: recall_at_1000
            value: 41.296
          - type: recall_at_3
            value: 0.6779999999999999
          - type: recall_at_5
            value: 1.1360000000000001
      - task:
          type: Retrieval
        dataset:
          type: webis-touche2020
          name: MTEB Touche2020
          config: default
          split: test
          revision: None
        metrics:
          - type: map_at_1
            value: 2.782
          - type: map_at_10
            value: 10.204
          - type: map_at_100
            value: 16.176
          - type: map_at_1000
            value: 17.456
          - type: map_at_3
            value: 5.354
          - type: map_at_5
            value: 7.503
          - type: mrr_at_1
            value: 40.816
          - type: mrr_at_10
            value: 54.010000000000005
          - type: mrr_at_100
            value: 54.49
          - type: mrr_at_1000
            value: 54.49
          - type: mrr_at_3
            value: 48.980000000000004
          - type: mrr_at_5
            value: 51.735
          - type: ndcg_at_1
            value: 36.735
          - type: ndcg_at_10
            value: 26.61
          - type: ndcg_at_100
            value: 36.967
          - type: ndcg_at_1000
            value: 47.274
          - type: ndcg_at_3
            value: 30.363
          - type: ndcg_at_5
            value: 29.448999999999998
          - type: precision_at_1
            value: 40.816
          - type: precision_at_10
            value: 23.878
          - type: precision_at_100
            value: 7.693999999999999
          - type: precision_at_1000
            value: 1.4489999999999998
          - type: precision_at_3
            value: 31.293
          - type: precision_at_5
            value: 29.796
          - type: recall_at_1
            value: 2.782
          - type: recall_at_10
            value: 16.485
          - type: recall_at_100
            value: 46.924
          - type: recall_at_1000
            value: 79.365
          - type: recall_at_3
            value: 6.52
          - type: recall_at_5
            value: 10.48
      - task:
          type: Classification
        dataset:
          type: mteb/toxic_conversations_50k
          name: MTEB ToxicConversationsClassification
          config: default
          split: test
          revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
        metrics:
          - type: accuracy
            value: 70.35220000000001
          - type: ap
            value: 14.121012926379601
          - type: f1
            value: 54.22118125394254
      - task:
          type: Classification
        dataset:
          type: mteb/tweet_sentiment_extraction
          name: MTEB TweetSentimentExtractionClassification
          config: default
          split: test
          revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
        metrics:
          - type: accuracy
            value: 59.90096208262592
          - type: f1
            value: 60.226896599794244
      - task:
          type: Clustering
        dataset:
          type: mteb/twentynewsgroups-clustering
          name: MTEB TwentyNewsgroupsClustering
          config: default
          split: test
          revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
        metrics:
          - type: v_measure
            value: 53.70780611078653
      - task:
          type: PairClassification
        dataset:
          type: mteb/twittersemeval2015-pairclassification
          name: MTEB TwitterSemEval2015
          config: default
          split: test
          revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
        metrics:
          - type: cos_sim_accuracy
            value: 87.10734934732073
          - type: cos_sim_ap
            value: 77.58349999516054
          - type: cos_sim_f1
            value: 70.25391395868965
          - type: cos_sim_precision
            value: 70.06035161374967
          - type: cos_sim_recall
            value: 70.44854881266491
          - type: dot_accuracy
            value: 80.60439887941826
          - type: dot_ap
            value: 54.52935200483575
          - type: dot_f1
            value: 54.170444242973716
          - type: dot_precision
            value: 47.47715534366309
          - type: dot_recall
            value: 63.06068601583114
          - type: euclidean_accuracy
            value: 87.26828396018358
          - type: euclidean_ap
            value: 78.00158454104036
          - type: euclidean_f1
            value: 70.70292457670601
          - type: euclidean_precision
            value: 68.79680479281079
          - type: euclidean_recall
            value: 72.71767810026385
          - type: manhattan_accuracy
            value: 87.11330988853788
          - type: manhattan_ap
            value: 77.92527099601855
          - type: manhattan_f1
            value: 70.76488706365502
          - type: manhattan_precision
            value: 68.89055472263868
          - type: manhattan_recall
            value: 72.74406332453826
          - type: max_accuracy
            value: 87.26828396018358
          - type: max_ap
            value: 78.00158454104036
          - type: max_f1
            value: 70.76488706365502
      - task:
          type: PairClassification
        dataset:
          type: mteb/twitterurlcorpus-pairclassification
          name: MTEB TwitterURLCorpus
          config: default
          split: test
          revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
        metrics:
          - type: cos_sim_accuracy
            value: 87.80804905499282
          - type: cos_sim_ap
            value: 83.06187782630936
          - type: cos_sim_f1
            value: 74.99716435403985
          - type: cos_sim_precision
            value: 73.67951860931579
          - type: cos_sim_recall
            value: 76.36279642747151
          - type: dot_accuracy
            value: 81.83141227151008
          - type: dot_ap
            value: 67.18241090841795
          - type: dot_f1
            value: 62.216037571751606
          - type: dot_precision
            value: 56.749381227391005
          - type: dot_recall
            value: 68.84816753926701
          - type: euclidean_accuracy
            value: 87.91671517832887
          - type: euclidean_ap
            value: 83.56538942001427
          - type: euclidean_f1
            value: 75.7327253337256
          - type: euclidean_precision
            value: 72.48856036606828
          - type: euclidean_recall
            value: 79.28087465352634
          - type: manhattan_accuracy
            value: 87.86626304963713
          - type: manhattan_ap
            value: 83.52939841172832
          - type: manhattan_f1
            value: 75.73635656329888
          - type: manhattan_precision
            value: 72.99150182103836
          - type: manhattan_recall
            value: 78.69571912534647
          - type: max_accuracy
            value: 87.91671517832887
          - type: max_ap
            value: 83.56538942001427
          - type: max_f1
            value: 75.73635656329888