bge-large-en / README.md
Shitao's picture
Update README.md
1a18bbd
|
raw
history blame
77.3 kB
---
tags:
- mteb
- sentence-transfomres
- transformers
model-index:
- name: bge-large-en
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.94029850746269
- type: ap
value: 40.00228964744091
- type: f1
value: 70.86088267934595
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 91.93745
- type: ap
value: 88.24758534667426
- type: f1
value: 91.91033034217591
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 46.158
- type: f1
value: 45.78935185074774
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 39.972
- type: map_at_10
value: 54.874
- type: map_at_100
value: 55.53399999999999
- type: map_at_1000
value: 55.539
- type: map_at_3
value: 51.031000000000006
- type: map_at_5
value: 53.342999999999996
- type: mrr_at_1
value: 40.541
- type: mrr_at_10
value: 55.096000000000004
- type: mrr_at_100
value: 55.75599999999999
- type: mrr_at_1000
value: 55.761
- type: mrr_at_3
value: 51.221000000000004
- type: mrr_at_5
value: 53.568000000000005
- type: ndcg_at_1
value: 39.972
- type: ndcg_at_10
value: 62.456999999999994
- type: ndcg_at_100
value: 65.262
- type: ndcg_at_1000
value: 65.389
- type: ndcg_at_3
value: 54.673
- type: ndcg_at_5
value: 58.80499999999999
- type: precision_at_1
value: 39.972
- type: precision_at_10
value: 8.634
- type: precision_at_100
value: 0.9860000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 21.740000000000002
- type: precision_at_5
value: 15.036
- type: recall_at_1
value: 39.972
- type: recall_at_10
value: 86.344
- type: recall_at_100
value: 98.578
- type: recall_at_1000
value: 99.57300000000001
- type: recall_at_3
value: 65.22
- type: recall_at_5
value: 75.178
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.94652870403906
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 43.17257160340209
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 63.97867370559182
- type: mrr
value: 77.00820032537484
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 80.00986015960616
- type: cos_sim_spearman
value: 80.36387933827882
- type: euclidean_pearson
value: 80.32305287257296
- type: euclidean_spearman
value: 82.0524720308763
- type: manhattan_pearson
value: 80.19847473906454
- type: manhattan_spearman
value: 81.87957652506985
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 88.00000000000001
- type: f1
value: 87.99039027511853
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 41.36932844640705
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 38.34983239611985
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.257999999999996
- type: map_at_10
value: 42.937
- type: map_at_100
value: 44.406
- type: map_at_1000
value: 44.536
- type: map_at_3
value: 39.22
- type: map_at_5
value: 41.458
- type: mrr_at_1
value: 38.769999999999996
- type: mrr_at_10
value: 48.701
- type: mrr_at_100
value: 49.431000000000004
- type: mrr_at_1000
value: 49.476
- type: mrr_at_3
value: 45.875
- type: mrr_at_5
value: 47.67
- type: ndcg_at_1
value: 38.769999999999996
- type: ndcg_at_10
value: 49.35
- type: ndcg_at_100
value: 54.618
- type: ndcg_at_1000
value: 56.655
- type: ndcg_at_3
value: 43.826
- type: ndcg_at_5
value: 46.72
- type: precision_at_1
value: 38.769999999999996
- type: precision_at_10
value: 9.328
- type: precision_at_100
value: 1.484
- type: precision_at_1000
value: 0.196
- type: precision_at_3
value: 20.649
- type: precision_at_5
value: 15.25
- type: recall_at_1
value: 32.257999999999996
- type: recall_at_10
value: 61.849
- type: recall_at_100
value: 83.70400000000001
- type: recall_at_1000
value: 96.344
- type: recall_at_3
value: 46.037
- type: recall_at_5
value: 53.724000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.979
- type: map_at_10
value: 43.376999999999995
- type: map_at_100
value: 44.667
- type: map_at_1000
value: 44.794
- type: map_at_3
value: 40.461999999999996
- type: map_at_5
value: 42.138
- type: mrr_at_1
value: 41.146
- type: mrr_at_10
value: 49.575
- type: mrr_at_100
value: 50.187000000000005
- type: mrr_at_1000
value: 50.231
- type: mrr_at_3
value: 47.601
- type: mrr_at_5
value: 48.786
- type: ndcg_at_1
value: 41.146
- type: ndcg_at_10
value: 48.957
- type: ndcg_at_100
value: 53.296
- type: ndcg_at_1000
value: 55.254000000000005
- type: ndcg_at_3
value: 45.235
- type: ndcg_at_5
value: 47.014
- type: precision_at_1
value: 41.146
- type: precision_at_10
value: 9.107999999999999
- type: precision_at_100
value: 1.481
- type: precision_at_1000
value: 0.193
- type: precision_at_3
value: 21.783
- type: precision_at_5
value: 15.274
- type: recall_at_1
value: 32.979
- type: recall_at_10
value: 58.167
- type: recall_at_100
value: 76.374
- type: recall_at_1000
value: 88.836
- type: recall_at_3
value: 46.838
- type: recall_at_5
value: 52.006
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.326
- type: map_at_10
value: 53.468
- type: map_at_100
value: 54.454
- type: map_at_1000
value: 54.508
- type: map_at_3
value: 50.12799999999999
- type: map_at_5
value: 51.991
- type: mrr_at_1
value: 46.394999999999996
- type: mrr_at_10
value: 57.016999999999996
- type: mrr_at_100
value: 57.67099999999999
- type: mrr_at_1000
value: 57.699999999999996
- type: mrr_at_3
value: 54.65
- type: mrr_at_5
value: 56.101
- type: ndcg_at_1
value: 46.394999999999996
- type: ndcg_at_10
value: 59.507
- type: ndcg_at_100
value: 63.31099999999999
- type: ndcg_at_1000
value: 64.388
- type: ndcg_at_3
value: 54.04600000000001
- type: ndcg_at_5
value: 56.723
- type: precision_at_1
value: 46.394999999999996
- type: precision_at_10
value: 9.567
- type: precision_at_100
value: 1.234
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 24.117
- type: precision_at_5
value: 16.426
- type: recall_at_1
value: 40.326
- type: recall_at_10
value: 73.763
- type: recall_at_100
value: 89.927
- type: recall_at_1000
value: 97.509
- type: recall_at_3
value: 59.34
- type: recall_at_5
value: 65.915
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.661
- type: map_at_10
value: 35.522
- type: map_at_100
value: 36.619
- type: map_at_1000
value: 36.693999999999996
- type: map_at_3
value: 33.154
- type: map_at_5
value: 34.353
- type: mrr_at_1
value: 28.362
- type: mrr_at_10
value: 37.403999999999996
- type: mrr_at_100
value: 38.374
- type: mrr_at_1000
value: 38.428000000000004
- type: mrr_at_3
value: 35.235
- type: mrr_at_5
value: 36.269
- type: ndcg_at_1
value: 28.362
- type: ndcg_at_10
value: 40.431
- type: ndcg_at_100
value: 45.745999999999995
- type: ndcg_at_1000
value: 47.493
- type: ndcg_at_3
value: 35.733
- type: ndcg_at_5
value: 37.722
- type: precision_at_1
value: 28.362
- type: precision_at_10
value: 6.101999999999999
- type: precision_at_100
value: 0.922
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 15.140999999999998
- type: precision_at_5
value: 10.305
- type: recall_at_1
value: 26.661
- type: recall_at_10
value: 53.675
- type: recall_at_100
value: 77.891
- type: recall_at_1000
value: 90.72
- type: recall_at_3
value: 40.751
- type: recall_at_5
value: 45.517
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.886
- type: map_at_10
value: 27.288
- type: map_at_100
value: 28.327999999999996
- type: map_at_1000
value: 28.438999999999997
- type: map_at_3
value: 24.453
- type: map_at_5
value: 25.959
- type: mrr_at_1
value: 23.134
- type: mrr_at_10
value: 32.004
- type: mrr_at_100
value: 32.789
- type: mrr_at_1000
value: 32.857
- type: mrr_at_3
value: 29.084
- type: mrr_at_5
value: 30.614
- type: ndcg_at_1
value: 23.134
- type: ndcg_at_10
value: 32.852
- type: ndcg_at_100
value: 37.972
- type: ndcg_at_1000
value: 40.656
- type: ndcg_at_3
value: 27.435
- type: ndcg_at_5
value: 29.823
- type: precision_at_1
value: 23.134
- type: precision_at_10
value: 6.032
- type: precision_at_100
value: 0.9950000000000001
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 13.017999999999999
- type: precision_at_5
value: 9.501999999999999
- type: recall_at_1
value: 18.886
- type: recall_at_10
value: 45.34
- type: recall_at_100
value: 67.947
- type: recall_at_1000
value: 86.924
- type: recall_at_3
value: 30.535
- type: recall_at_5
value: 36.451
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 28.994999999999997
- type: map_at_10
value: 40.04
- type: map_at_100
value: 41.435
- type: map_at_1000
value: 41.537
- type: map_at_3
value: 37.091
- type: map_at_5
value: 38.802
- type: mrr_at_1
value: 35.034
- type: mrr_at_10
value: 45.411
- type: mrr_at_100
value: 46.226
- type: mrr_at_1000
value: 46.27
- type: mrr_at_3
value: 43.086
- type: mrr_at_5
value: 44.452999999999996
- type: ndcg_at_1
value: 35.034
- type: ndcg_at_10
value: 46.076
- type: ndcg_at_100
value: 51.483000000000004
- type: ndcg_at_1000
value: 53.433
- type: ndcg_at_3
value: 41.304
- type: ndcg_at_5
value: 43.641999999999996
- type: precision_at_1
value: 35.034
- type: precision_at_10
value: 8.258000000000001
- type: precision_at_100
value: 1.268
- type: precision_at_1000
value: 0.161
- type: precision_at_3
value: 19.57
- type: precision_at_5
value: 13.782
- type: recall_at_1
value: 28.994999999999997
- type: recall_at_10
value: 58.538000000000004
- type: recall_at_100
value: 80.72399999999999
- type: recall_at_1000
value: 93.462
- type: recall_at_3
value: 45.199
- type: recall_at_5
value: 51.237
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.795
- type: map_at_10
value: 34.935
- type: map_at_100
value: 36.306
- type: map_at_1000
value: 36.417
- type: map_at_3
value: 31.831
- type: map_at_5
value: 33.626
- type: mrr_at_1
value: 30.479
- type: mrr_at_10
value: 40.225
- type: mrr_at_100
value: 41.055
- type: mrr_at_1000
value: 41.114
- type: mrr_at_3
value: 37.538
- type: mrr_at_5
value: 39.073
- type: ndcg_at_1
value: 30.479
- type: ndcg_at_10
value: 40.949999999999996
- type: ndcg_at_100
value: 46.525
- type: ndcg_at_1000
value: 48.892
- type: ndcg_at_3
value: 35.79
- type: ndcg_at_5
value: 38.237
- type: precision_at_1
value: 30.479
- type: precision_at_10
value: 7.6259999999999994
- type: precision_at_100
value: 1.203
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 17.199
- type: precision_at_5
value: 12.466000000000001
- type: recall_at_1
value: 24.795
- type: recall_at_10
value: 53.421
- type: recall_at_100
value: 77.189
- type: recall_at_1000
value: 93.407
- type: recall_at_3
value: 39.051
- type: recall_at_5
value: 45.462
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.853499999999997
- type: map_at_10
value: 36.20433333333333
- type: map_at_100
value: 37.40391666666667
- type: map_at_1000
value: 37.515
- type: map_at_3
value: 33.39975
- type: map_at_5
value: 34.9665
- type: mrr_at_1
value: 31.62666666666667
- type: mrr_at_10
value: 40.436749999999996
- type: mrr_at_100
value: 41.260333333333335
- type: mrr_at_1000
value: 41.31525
- type: mrr_at_3
value: 38.06733333333332
- type: mrr_at_5
value: 39.41541666666667
- type: ndcg_at_1
value: 31.62666666666667
- type: ndcg_at_10
value: 41.63341666666667
- type: ndcg_at_100
value: 46.704166666666666
- type: ndcg_at_1000
value: 48.88483333333335
- type: ndcg_at_3
value: 36.896
- type: ndcg_at_5
value: 39.11891666666667
- type: precision_at_1
value: 31.62666666666667
- type: precision_at_10
value: 7.241083333333333
- type: precision_at_100
value: 1.1488333333333334
- type: precision_at_1000
value: 0.15250000000000002
- type: precision_at_3
value: 16.908333333333335
- type: precision_at_5
value: 11.942833333333333
- type: recall_at_1
value: 26.853499999999997
- type: recall_at_10
value: 53.461333333333336
- type: recall_at_100
value: 75.63633333333333
- type: recall_at_1000
value: 90.67016666666666
- type: recall_at_3
value: 40.24241666666667
- type: recall_at_5
value: 45.98608333333333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.241999999999997
- type: map_at_10
value: 31.863999999999997
- type: map_at_100
value: 32.835
- type: map_at_1000
value: 32.928000000000004
- type: map_at_3
value: 29.694
- type: map_at_5
value: 30.978
- type: mrr_at_1
value: 28.374
- type: mrr_at_10
value: 34.814
- type: mrr_at_100
value: 35.596
- type: mrr_at_1000
value: 35.666
- type: mrr_at_3
value: 32.745000000000005
- type: mrr_at_5
value: 34.049
- type: ndcg_at_1
value: 28.374
- type: ndcg_at_10
value: 35.969
- type: ndcg_at_100
value: 40.708
- type: ndcg_at_1000
value: 43.08
- type: ndcg_at_3
value: 31.968999999999998
- type: ndcg_at_5
value: 34.069
- type: precision_at_1
value: 28.374
- type: precision_at_10
value: 5.583
- type: precision_at_100
value: 0.8630000000000001
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 13.547999999999998
- type: precision_at_5
value: 9.447999999999999
- type: recall_at_1
value: 25.241999999999997
- type: recall_at_10
value: 45.711
- type: recall_at_100
value: 67.482
- type: recall_at_1000
value: 85.13300000000001
- type: recall_at_3
value: 34.622
- type: recall_at_5
value: 40.043
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.488999999999997
- type: map_at_10
value: 25.142999999999997
- type: map_at_100
value: 26.244
- type: map_at_1000
value: 26.363999999999997
- type: map_at_3
value: 22.654
- type: map_at_5
value: 24.017
- type: mrr_at_1
value: 21.198
- type: mrr_at_10
value: 28.903000000000002
- type: mrr_at_100
value: 29.860999999999997
- type: mrr_at_1000
value: 29.934
- type: mrr_at_3
value: 26.634999999999998
- type: mrr_at_5
value: 27.903
- type: ndcg_at_1
value: 21.198
- type: ndcg_at_10
value: 29.982999999999997
- type: ndcg_at_100
value: 35.275
- type: ndcg_at_1000
value: 38.074000000000005
- type: ndcg_at_3
value: 25.502999999999997
- type: ndcg_at_5
value: 27.557
- type: precision_at_1
value: 21.198
- type: precision_at_10
value: 5.502
- type: precision_at_100
value: 0.942
- type: precision_at_1000
value: 0.136
- type: precision_at_3
value: 12.044
- type: precision_at_5
value: 8.782
- type: recall_at_1
value: 17.488999999999997
- type: recall_at_10
value: 40.821000000000005
- type: recall_at_100
value: 64.567
- type: recall_at_1000
value: 84.452
- type: recall_at_3
value: 28.351
- type: recall_at_5
value: 33.645
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.066000000000003
- type: map_at_10
value: 36.134
- type: map_at_100
value: 37.285000000000004
- type: map_at_1000
value: 37.389
- type: map_at_3
value: 33.522999999999996
- type: map_at_5
value: 34.905
- type: mrr_at_1
value: 31.436999999999998
- type: mrr_at_10
value: 40.225
- type: mrr_at_100
value: 41.079
- type: mrr_at_1000
value: 41.138000000000005
- type: mrr_at_3
value: 38.074999999999996
- type: mrr_at_5
value: 39.190000000000005
- type: ndcg_at_1
value: 31.436999999999998
- type: ndcg_at_10
value: 41.494
- type: ndcg_at_100
value: 46.678999999999995
- type: ndcg_at_1000
value: 48.964
- type: ndcg_at_3
value: 36.828
- type: ndcg_at_5
value: 38.789
- type: precision_at_1
value: 31.436999999999998
- type: precision_at_10
value: 6.931
- type: precision_at_100
value: 1.072
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 16.729
- type: precision_at_5
value: 11.567
- type: recall_at_1
value: 27.066000000000003
- type: recall_at_10
value: 53.705000000000005
- type: recall_at_100
value: 75.968
- type: recall_at_1000
value: 91.937
- type: recall_at_3
value: 40.865
- type: recall_at_5
value: 45.739999999999995
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.979000000000003
- type: map_at_10
value: 32.799
- type: map_at_100
value: 34.508
- type: map_at_1000
value: 34.719
- type: map_at_3
value: 29.947000000000003
- type: map_at_5
value: 31.584
- type: mrr_at_1
value: 30.237000000000002
- type: mrr_at_10
value: 37.651
- type: mrr_at_100
value: 38.805
- type: mrr_at_1000
value: 38.851
- type: mrr_at_3
value: 35.046
- type: mrr_at_5
value: 36.548
- type: ndcg_at_1
value: 30.237000000000002
- type: ndcg_at_10
value: 38.356
- type: ndcg_at_100
value: 44.906
- type: ndcg_at_1000
value: 47.299
- type: ndcg_at_3
value: 33.717999999999996
- type: ndcg_at_5
value: 35.946
- type: precision_at_1
value: 30.237000000000002
- type: precision_at_10
value: 7.292
- type: precision_at_100
value: 1.496
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 15.547
- type: precision_at_5
value: 11.344
- type: recall_at_1
value: 24.979000000000003
- type: recall_at_10
value: 48.624
- type: recall_at_100
value: 77.932
- type: recall_at_1000
value: 92.66499999999999
- type: recall_at_3
value: 35.217
- type: recall_at_5
value: 41.394
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.566
- type: map_at_10
value: 30.945
- type: map_at_100
value: 31.759999999999998
- type: map_at_1000
value: 31.855
- type: map_at_3
value: 28.64
- type: map_at_5
value: 29.787000000000003
- type: mrr_at_1
value: 24.954
- type: mrr_at_10
value: 33.311
- type: mrr_at_100
value: 34.050000000000004
- type: mrr_at_1000
value: 34.117999999999995
- type: mrr_at_3
value: 31.238
- type: mrr_at_5
value: 32.329
- type: ndcg_at_1
value: 24.954
- type: ndcg_at_10
value: 35.676
- type: ndcg_at_100
value: 39.931
- type: ndcg_at_1000
value: 42.43
- type: ndcg_at_3
value: 31.365
- type: ndcg_at_5
value: 33.184999999999995
- type: precision_at_1
value: 24.954
- type: precision_at_10
value: 5.564
- type: precision_at_100
value: 0.826
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 13.555
- type: precision_at_5
value: 9.168
- type: recall_at_1
value: 22.566
- type: recall_at_10
value: 47.922
- type: recall_at_100
value: 67.931
- type: recall_at_1000
value: 86.653
- type: recall_at_3
value: 36.103
- type: recall_at_5
value: 40.699000000000005
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.950000000000003
- type: map_at_10
value: 28.612
- type: map_at_100
value: 30.476999999999997
- type: map_at_1000
value: 30.674
- type: map_at_3
value: 24.262
- type: map_at_5
value: 26.554
- type: mrr_at_1
value: 38.241
- type: mrr_at_10
value: 50.43
- type: mrr_at_100
value: 51.059
- type: mrr_at_1000
value: 51.090999999999994
- type: mrr_at_3
value: 47.514
- type: mrr_at_5
value: 49.246
- type: ndcg_at_1
value: 38.241
- type: ndcg_at_10
value: 38.218
- type: ndcg_at_100
value: 45.003
- type: ndcg_at_1000
value: 48.269
- type: ndcg_at_3
value: 32.568000000000005
- type: ndcg_at_5
value: 34.400999999999996
- type: precision_at_1
value: 38.241
- type: precision_at_10
value: 11.674
- type: precision_at_100
value: 1.913
- type: precision_at_1000
value: 0.252
- type: precision_at_3
value: 24.387
- type: precision_at_5
value: 18.163
- type: recall_at_1
value: 16.950000000000003
- type: recall_at_10
value: 43.769000000000005
- type: recall_at_100
value: 66.875
- type: recall_at_1000
value: 84.92699999999999
- type: recall_at_3
value: 29.353
- type: recall_at_5
value: 35.467
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.276
- type: map_at_10
value: 20.848
- type: map_at_100
value: 29.804000000000002
- type: map_at_1000
value: 31.398
- type: map_at_3
value: 14.886
- type: map_at_5
value: 17.516000000000002
- type: mrr_at_1
value: 71
- type: mrr_at_10
value: 78.724
- type: mrr_at_100
value: 78.976
- type: mrr_at_1000
value: 78.986
- type: mrr_at_3
value: 77.333
- type: mrr_at_5
value: 78.021
- type: ndcg_at_1
value: 57.875
- type: ndcg_at_10
value: 43.855
- type: ndcg_at_100
value: 48.99
- type: ndcg_at_1000
value: 56.141
- type: ndcg_at_3
value: 48.914
- type: ndcg_at_5
value: 45.961
- type: precision_at_1
value: 71
- type: precision_at_10
value: 34.575
- type: precision_at_100
value: 11.182
- type: precision_at_1000
value: 2.044
- type: precision_at_3
value: 52.5
- type: precision_at_5
value: 44.2
- type: recall_at_1
value: 9.276
- type: recall_at_10
value: 26.501
- type: recall_at_100
value: 55.72899999999999
- type: recall_at_1000
value: 78.532
- type: recall_at_3
value: 16.365
- type: recall_at_5
value: 20.154
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 52.71
- type: f1
value: 47.74801556489574
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 73.405
- type: map_at_10
value: 82.822
- type: map_at_100
value: 83.042
- type: map_at_1000
value: 83.055
- type: map_at_3
value: 81.65299999999999
- type: map_at_5
value: 82.431
- type: mrr_at_1
value: 79.178
- type: mrr_at_10
value: 87.02
- type: mrr_at_100
value: 87.095
- type: mrr_at_1000
value: 87.09700000000001
- type: mrr_at_3
value: 86.309
- type: mrr_at_5
value: 86.824
- type: ndcg_at_1
value: 79.178
- type: ndcg_at_10
value: 86.72
- type: ndcg_at_100
value: 87.457
- type: ndcg_at_1000
value: 87.691
- type: ndcg_at_3
value: 84.974
- type: ndcg_at_5
value: 86.032
- type: precision_at_1
value: 79.178
- type: precision_at_10
value: 10.548
- type: precision_at_100
value: 1.113
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 32.848
- type: precision_at_5
value: 20.45
- type: recall_at_1
value: 73.405
- type: recall_at_10
value: 94.39699999999999
- type: recall_at_100
value: 97.219
- type: recall_at_1000
value: 98.675
- type: recall_at_3
value: 89.679
- type: recall_at_5
value: 92.392
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.651
- type: map_at_10
value: 36.886
- type: map_at_100
value: 38.811
- type: map_at_1000
value: 38.981
- type: map_at_3
value: 32.538
- type: map_at_5
value: 34.763
- type: mrr_at_1
value: 44.444
- type: mrr_at_10
value: 53.168000000000006
- type: mrr_at_100
value: 53.839000000000006
- type: mrr_at_1000
value: 53.869
- type: mrr_at_3
value: 50.54
- type: mrr_at_5
value: 52.068000000000005
- type: ndcg_at_1
value: 44.444
- type: ndcg_at_10
value: 44.994
- type: ndcg_at_100
value: 51.599
- type: ndcg_at_1000
value: 54.339999999999996
- type: ndcg_at_3
value: 41.372
- type: ndcg_at_5
value: 42.149
- type: precision_at_1
value: 44.444
- type: precision_at_10
value: 12.407
- type: precision_at_100
value: 1.9269999999999998
- type: precision_at_1000
value: 0.242
- type: precision_at_3
value: 27.726
- type: precision_at_5
value: 19.814999999999998
- type: recall_at_1
value: 22.651
- type: recall_at_10
value: 52.075
- type: recall_at_100
value: 76.51400000000001
- type: recall_at_1000
value: 92.852
- type: recall_at_3
value: 37.236000000000004
- type: recall_at_5
value: 43.175999999999995
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.777
- type: map_at_10
value: 66.79899999999999
- type: map_at_100
value: 67.65299999999999
- type: map_at_1000
value: 67.706
- type: map_at_3
value: 63.352
- type: map_at_5
value: 65.52900000000001
- type: mrr_at_1
value: 81.553
- type: mrr_at_10
value: 86.983
- type: mrr_at_100
value: 87.132
- type: mrr_at_1000
value: 87.136
- type: mrr_at_3
value: 86.156
- type: mrr_at_5
value: 86.726
- type: ndcg_at_1
value: 81.553
- type: ndcg_at_10
value: 74.64
- type: ndcg_at_100
value: 77.459
- type: ndcg_at_1000
value: 78.43
- type: ndcg_at_3
value: 69.878
- type: ndcg_at_5
value: 72.59400000000001
- type: precision_at_1
value: 81.553
- type: precision_at_10
value: 15.654000000000002
- type: precision_at_100
value: 1.783
- type: precision_at_1000
value: 0.191
- type: precision_at_3
value: 45.199
- type: precision_at_5
value: 29.267
- type: recall_at_1
value: 40.777
- type: recall_at_10
value: 78.271
- type: recall_at_100
value: 89.129
- type: recall_at_1000
value: 95.49
- type: recall_at_3
value: 67.79899999999999
- type: recall_at_5
value: 73.167
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 93.5064
- type: ap
value: 90.25495114444111
- type: f1
value: 93.5012434973381
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 23.301
- type: map_at_10
value: 35.657
- type: map_at_100
value: 36.797000000000004
- type: map_at_1000
value: 36.844
- type: map_at_3
value: 31.743
- type: map_at_5
value: 34.003
- type: mrr_at_1
value: 23.854
- type: mrr_at_10
value: 36.242999999999995
- type: mrr_at_100
value: 37.32
- type: mrr_at_1000
value: 37.361
- type: mrr_at_3
value: 32.4
- type: mrr_at_5
value: 34.634
- type: ndcg_at_1
value: 23.868000000000002
- type: ndcg_at_10
value: 42.589
- type: ndcg_at_100
value: 48.031
- type: ndcg_at_1000
value: 49.189
- type: ndcg_at_3
value: 34.649
- type: ndcg_at_5
value: 38.676
- type: precision_at_1
value: 23.868000000000002
- type: precision_at_10
value: 6.6850000000000005
- type: precision_at_100
value: 0.9400000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.651
- type: precision_at_5
value: 10.834000000000001
- type: recall_at_1
value: 23.301
- type: recall_at_10
value: 63.88700000000001
- type: recall_at_100
value: 88.947
- type: recall_at_1000
value: 97.783
- type: recall_at_3
value: 42.393
- type: recall_at_5
value: 52.036
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.64888280893753
- type: f1
value: 94.41310774203512
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 79.72184222526221
- type: f1
value: 61.522034067350106
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 79.60659045057163
- type: f1
value: 77.268649687049
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 81.83254875588432
- type: f1
value: 81.61520635919082
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 36.31529875009507
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.734233714415073
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.994501713009452
- type: mrr
value: 32.13512850703073
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.603000000000001
- type: map_at_10
value: 13.767999999999999
- type: map_at_100
value: 17.197000000000003
- type: map_at_1000
value: 18.615000000000002
- type: map_at_3
value: 10.567
- type: map_at_5
value: 12.078999999999999
- type: mrr_at_1
value: 44.891999999999996
- type: mrr_at_10
value: 53.75299999999999
- type: mrr_at_100
value: 54.35
- type: mrr_at_1000
value: 54.388000000000005
- type: mrr_at_3
value: 51.495999999999995
- type: mrr_at_5
value: 52.688
- type: ndcg_at_1
value: 43.189
- type: ndcg_at_10
value: 34.567
- type: ndcg_at_100
value: 32.273
- type: ndcg_at_1000
value: 41.321999999999996
- type: ndcg_at_3
value: 40.171
- type: ndcg_at_5
value: 37.502
- type: precision_at_1
value: 44.582
- type: precision_at_10
value: 25.139
- type: precision_at_100
value: 7.739999999999999
- type: precision_at_1000
value: 2.054
- type: precision_at_3
value: 37.152
- type: precision_at_5
value: 31.826999999999998
- type: recall_at_1
value: 6.603000000000001
- type: recall_at_10
value: 17.023
- type: recall_at_100
value: 32.914
- type: recall_at_1000
value: 64.44800000000001
- type: recall_at_3
value: 11.457
- type: recall_at_5
value: 13.816
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.026000000000003
- type: map_at_10
value: 45.429
- type: map_at_100
value: 46.45
- type: map_at_1000
value: 46.478
- type: map_at_3
value: 41.147
- type: map_at_5
value: 43.627
- type: mrr_at_1
value: 33.951
- type: mrr_at_10
value: 47.953
- type: mrr_at_100
value: 48.731
- type: mrr_at_1000
value: 48.751
- type: mrr_at_3
value: 44.39
- type: mrr_at_5
value: 46.533
- type: ndcg_at_1
value: 33.951
- type: ndcg_at_10
value: 53.24100000000001
- type: ndcg_at_100
value: 57.599999999999994
- type: ndcg_at_1000
value: 58.270999999999994
- type: ndcg_at_3
value: 45.190999999999995
- type: ndcg_at_5
value: 49.339
- type: precision_at_1
value: 33.951
- type: precision_at_10
value: 8.856
- type: precision_at_100
value: 1.133
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 20.713
- type: precision_at_5
value: 14.838000000000001
- type: recall_at_1
value: 30.026000000000003
- type: recall_at_10
value: 74.512
- type: recall_at_100
value: 93.395
- type: recall_at_1000
value: 98.402
- type: recall_at_3
value: 53.677
- type: recall_at_5
value: 63.198
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.41300000000001
- type: map_at_10
value: 85.387
- type: map_at_100
value: 86.027
- type: map_at_1000
value: 86.041
- type: map_at_3
value: 82.543
- type: map_at_5
value: 84.304
- type: mrr_at_1
value: 82.35
- type: mrr_at_10
value: 88.248
- type: mrr_at_100
value: 88.348
- type: mrr_at_1000
value: 88.349
- type: mrr_at_3
value: 87.348
- type: mrr_at_5
value: 87.96300000000001
- type: ndcg_at_1
value: 82.37
- type: ndcg_at_10
value: 88.98
- type: ndcg_at_100
value: 90.16499999999999
- type: ndcg_at_1000
value: 90.239
- type: ndcg_at_3
value: 86.34100000000001
- type: ndcg_at_5
value: 87.761
- type: precision_at_1
value: 82.37
- type: precision_at_10
value: 13.471
- type: precision_at_100
value: 1.534
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.827
- type: precision_at_5
value: 24.773999999999997
- type: recall_at_1
value: 71.41300000000001
- type: recall_at_10
value: 95.748
- type: recall_at_100
value: 99.69200000000001
- type: recall_at_1000
value: 99.98
- type: recall_at_3
value: 87.996
- type: recall_at_5
value: 92.142
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 56.96878497780007
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 65.31371347128074
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.287
- type: map_at_10
value: 13.530000000000001
- type: map_at_100
value: 15.891
- type: map_at_1000
value: 16.245
- type: map_at_3
value: 9.612
- type: map_at_5
value: 11.672
- type: mrr_at_1
value: 26
- type: mrr_at_10
value: 37.335
- type: mrr_at_100
value: 38.443
- type: mrr_at_1000
value: 38.486
- type: mrr_at_3
value: 33.783
- type: mrr_at_5
value: 36.028
- type: ndcg_at_1
value: 26
- type: ndcg_at_10
value: 22.215
- type: ndcg_at_100
value: 31.101
- type: ndcg_at_1000
value: 36.809
- type: ndcg_at_3
value: 21.104
- type: ndcg_at_5
value: 18.759999999999998
- type: precision_at_1
value: 26
- type: precision_at_10
value: 11.43
- type: precision_at_100
value: 2.424
- type: precision_at_1000
value: 0.379
- type: precision_at_3
value: 19.7
- type: precision_at_5
value: 16.619999999999997
- type: recall_at_1
value: 5.287
- type: recall_at_10
value: 23.18
- type: recall_at_100
value: 49.208
- type: recall_at_1000
value: 76.85300000000001
- type: recall_at_3
value: 11.991999999999999
- type: recall_at_5
value: 16.85
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.87834913790886
- type: cos_sim_spearman
value: 81.04583513112122
- type: euclidean_pearson
value: 81.20484174558065
- type: euclidean_spearman
value: 80.76430832561769
- type: manhattan_pearson
value: 81.21416730978615
- type: manhattan_spearman
value: 80.7797637394211
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.56143998865157
- type: cos_sim_spearman
value: 79.75387012744471
- type: euclidean_pearson
value: 83.7877519997019
- type: euclidean_spearman
value: 79.90489748003296
- type: manhattan_pearson
value: 83.7540590666095
- type: manhattan_spearman
value: 79.86434577931573
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 83.92102564177941
- type: cos_sim_spearman
value: 84.98234585939103
- type: euclidean_pearson
value: 84.47729567593696
- type: euclidean_spearman
value: 85.09490696194469
- type: manhattan_pearson
value: 84.38622951588229
- type: manhattan_spearman
value: 85.02507171545574
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 80.1891164763377
- type: cos_sim_spearman
value: 80.7997969966883
- type: euclidean_pearson
value: 80.48572256162396
- type: euclidean_spearman
value: 80.57851903536378
- type: manhattan_pearson
value: 80.4324819433651
- type: manhattan_spearman
value: 80.5074526239062
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 82.64319975116025
- type: cos_sim_spearman
value: 84.88671197763652
- type: euclidean_pearson
value: 84.74692193293231
- type: euclidean_spearman
value: 85.27151722073653
- type: manhattan_pearson
value: 84.72460516785438
- type: manhattan_spearman
value: 85.26518899786687
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.24687565822381
- type: cos_sim_spearman
value: 85.60418454111263
- type: euclidean_pearson
value: 84.85829740169851
- type: euclidean_spearman
value: 85.66378014138306
- type: manhattan_pearson
value: 84.84672408808835
- type: manhattan_spearman
value: 85.63331924364891
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 84.87758895415485
- type: cos_sim_spearman
value: 85.8193745617297
- type: euclidean_pearson
value: 85.78719118848134
- type: euclidean_spearman
value: 84.35797575385688
- type: manhattan_pearson
value: 85.97919844815692
- type: manhattan_spearman
value: 84.58334745175151
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 67.27076035963599
- type: cos_sim_spearman
value: 67.21433656439973
- type: euclidean_pearson
value: 68.07434078679324
- type: euclidean_spearman
value: 66.0249731719049
- type: manhattan_pearson
value: 67.95495198947476
- type: manhattan_spearman
value: 65.99893908331886
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 82.22437747056817
- type: cos_sim_spearman
value: 85.0995685206174
- type: euclidean_pearson
value: 84.08616925603394
- type: euclidean_spearman
value: 84.89633925691658
- type: manhattan_pearson
value: 84.08332675923133
- type: manhattan_spearman
value: 84.8858228112915
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.6909022589666
- type: mrr
value: 96.43341952165481
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 57.660999999999994
- type: map_at_10
value: 67.625
- type: map_at_100
value: 68.07600000000001
- type: map_at_1000
value: 68.10199999999999
- type: map_at_3
value: 64.50399999999999
- type: map_at_5
value: 66.281
- type: mrr_at_1
value: 61
- type: mrr_at_10
value: 68.953
- type: mrr_at_100
value: 69.327
- type: mrr_at_1000
value: 69.352
- type: mrr_at_3
value: 66.833
- type: mrr_at_5
value: 68.05
- type: ndcg_at_1
value: 61
- type: ndcg_at_10
value: 72.369
- type: ndcg_at_100
value: 74.237
- type: ndcg_at_1000
value: 74.939
- type: ndcg_at_3
value: 67.284
- type: ndcg_at_5
value: 69.72500000000001
- type: precision_at_1
value: 61
- type: precision_at_10
value: 9.733
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 26.222
- type: precision_at_5
value: 17.4
- type: recall_at_1
value: 57.660999999999994
- type: recall_at_10
value: 85.656
- type: recall_at_100
value: 93.833
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 71.961
- type: recall_at_5
value: 78.094
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.86930693069307
- type: cos_sim_ap
value: 96.76685487950894
- type: cos_sim_f1
value: 93.44587884806354
- type: cos_sim_precision
value: 92.80078895463511
- type: cos_sim_recall
value: 94.1
- type: dot_accuracy
value: 99.54356435643564
- type: dot_ap
value: 81.18659960405607
- type: dot_f1
value: 75.78008915304605
- type: dot_precision
value: 75.07360157016683
- type: dot_recall
value: 76.5
- type: euclidean_accuracy
value: 99.87326732673267
- type: euclidean_ap
value: 96.8102411908941
- type: euclidean_f1
value: 93.6127744510978
- type: euclidean_precision
value: 93.42629482071713
- type: euclidean_recall
value: 93.8
- type: manhattan_accuracy
value: 99.87425742574257
- type: manhattan_ap
value: 96.82857341435529
- type: manhattan_f1
value: 93.62129583124059
- type: manhattan_precision
value: 94.04641775983855
- type: manhattan_recall
value: 93.2
- type: max_accuracy
value: 99.87425742574257
- type: max_ap
value: 96.82857341435529
- type: max_f1
value: 93.62129583124059
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 65.92560972698926
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 34.92797240259008
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 55.244624045597654
- type: mrr
value: 56.185303666921314
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.02491987312937
- type: cos_sim_spearman
value: 32.055592206679734
- type: dot_pearson
value: 24.731627575422557
- type: dot_spearman
value: 24.308029077069733
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.231
- type: map_at_10
value: 1.899
- type: map_at_100
value: 9.498
- type: map_at_1000
value: 20.979999999999997
- type: map_at_3
value: 0.652
- type: map_at_5
value: 1.069
- type: mrr_at_1
value: 88
- type: mrr_at_10
value: 93.4
- type: mrr_at_100
value: 93.4
- type: mrr_at_1000
value: 93.4
- type: mrr_at_3
value: 93
- type: mrr_at_5
value: 93.4
- type: ndcg_at_1
value: 86
- type: ndcg_at_10
value: 75.375
- type: ndcg_at_100
value: 52.891999999999996
- type: ndcg_at_1000
value: 44.952999999999996
- type: ndcg_at_3
value: 81.05
- type: ndcg_at_5
value: 80.175
- type: precision_at_1
value: 88
- type: precision_at_10
value: 79
- type: precision_at_100
value: 53.16
- type: precision_at_1000
value: 19.408
- type: precision_at_3
value: 85.333
- type: precision_at_5
value: 84
- type: recall_at_1
value: 0.231
- type: recall_at_10
value: 2.078
- type: recall_at_100
value: 12.601
- type: recall_at_1000
value: 41.296
- type: recall_at_3
value: 0.6779999999999999
- type: recall_at_5
value: 1.1360000000000001
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.782
- type: map_at_10
value: 10.204
- type: map_at_100
value: 16.176
- type: map_at_1000
value: 17.456
- type: map_at_3
value: 5.354
- type: map_at_5
value: 7.503
- type: mrr_at_1
value: 40.816
- type: mrr_at_10
value: 54.010000000000005
- type: mrr_at_100
value: 54.49
- type: mrr_at_1000
value: 54.49
- type: mrr_at_3
value: 48.980000000000004
- type: mrr_at_5
value: 51.735
- type: ndcg_at_1
value: 36.735
- type: ndcg_at_10
value: 26.61
- type: ndcg_at_100
value: 36.967
- type: ndcg_at_1000
value: 47.274
- type: ndcg_at_3
value: 30.363
- type: ndcg_at_5
value: 29.448999999999998
- type: precision_at_1
value: 40.816
- type: precision_at_10
value: 23.878
- type: precision_at_100
value: 7.693999999999999
- type: precision_at_1000
value: 1.4489999999999998
- type: precision_at_3
value: 31.293
- type: precision_at_5
value: 29.796
- type: recall_at_1
value: 2.782
- type: recall_at_10
value: 16.485
- type: recall_at_100
value: 46.924
- type: recall_at_1000
value: 79.365
- type: recall_at_3
value: 6.52
- type: recall_at_5
value: 10.48
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 70.08300000000001
- type: ap
value: 13.91559884590195
- type: f1
value: 53.956838444291364
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.34069043576683
- type: f1
value: 59.662041994618406
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 53.70780611078653
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 87.10734934732073
- type: cos_sim_ap
value: 77.58349999516054
- type: cos_sim_f1
value: 70.25391395868965
- type: cos_sim_precision
value: 70.06035161374967
- type: cos_sim_recall
value: 70.44854881266491
- type: dot_accuracy
value: 80.60439887941826
- type: dot_ap
value: 54.52935200483575
- type: dot_f1
value: 54.170444242973716
- type: dot_precision
value: 47.47715534366309
- type: dot_recall
value: 63.06068601583114
- type: euclidean_accuracy
value: 87.26828396018358
- type: euclidean_ap
value: 78.00158454104036
- type: euclidean_f1
value: 70.70292457670601
- type: euclidean_precision
value: 68.79680479281079
- type: euclidean_recall
value: 72.71767810026385
- type: manhattan_accuracy
value: 87.11330988853788
- type: manhattan_ap
value: 77.92527099601855
- type: manhattan_f1
value: 70.76488706365502
- type: manhattan_precision
value: 68.89055472263868
- type: manhattan_recall
value: 72.74406332453826
- type: max_accuracy
value: 87.26828396018358
- type: max_ap
value: 78.00158454104036
- type: max_f1
value: 70.76488706365502
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 87.80804905499282
- type: cos_sim_ap
value: 83.06187782630936
- type: cos_sim_f1
value: 74.99716435403985
- type: cos_sim_precision
value: 73.67951860931579
- type: cos_sim_recall
value: 76.36279642747151
- type: dot_accuracy
value: 81.83141227151008
- type: dot_ap
value: 67.18241090841795
- type: dot_f1
value: 62.216037571751606
- type: dot_precision
value: 56.749381227391005
- type: dot_recall
value: 68.84816753926701
- type: euclidean_accuracy
value: 87.91671517832887
- type: euclidean_ap
value: 83.56538942001427
- type: euclidean_f1
value: 75.7327253337256
- type: euclidean_precision
value: 72.48856036606828
- type: euclidean_recall
value: 79.28087465352634
- type: manhattan_accuracy
value: 87.86626304963713
- type: manhattan_ap
value: 83.52939841172832
- type: manhattan_f1
value: 75.73635656329888
- type: manhattan_precision
value: 72.99150182103836
- type: manhattan_recall
value: 78.69571912534647
- type: max_accuracy
value: 87.91671517832887
- type: max_ap
value: 83.56538942001427
- type: max_f1
value: 75.73635656329888
license: mit
language:
- en
pipeline_tag: sentence-similarity
---
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#license">License</a>
<p>
</h4>
For more details please refer to our GitHub repo: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding can map any text to a low-dimensional dense vector which can be used for tasks like retrieval, classification, clustering, or semantic search.
And it also can be used in vector databases for LLMs.
************* 🌟**Updates**🌟 *************
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | Description | query instruction for retrieval |
|:-------------------------------|:--------:| :--------:| :--------:|
| [BAAI/bge-large-en](https://huggingface.co./BAAI/bge-large-en) | English | :trophy: rank **1st** in [MTEB](https://huggingface.co./spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co./BAAI/bge-base-en) | English | rank **2nd** in [MTEB](https://huggingface.co./spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co./BAAI/bge-small-en) | English | a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co./BAAI/bge-large-zh) | Chinese | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-zh-noinstruct](https://huggingface.co./BAAI/bge-large-zh-noinstruct) | Chinese | This model is trained without instruction, and rank **2nd** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | |
| [BAAI/bge-base-zh](https://huggingface.co./BAAI/bge-base-zh) | Chinese | a base-scale model but has similar ability with `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co./BAAI/bge-small-zh) | Chinese | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
## Usage
* **Using FlagEmbedding**
```
pip install -U FlagEmbedding
```
See [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences = ["样例数据-1", "样例数据-2"]
model = FlagModel('BAAI/bge-large-zh', query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:")
embeddings = model.encode(sentences)
print(embeddings)
# for retrieval task, please use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus()
queries = ['query_1', 'query_2']
passages = ["样例段落-1", "样例段落-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
The value of argument `query_instruction_for_retrieval` see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
FlagModel will use all available GPUs when encoding, please set `os.environ["CUDA_VISIBLE_DEVICES"]` to choose GPU.
* **Using Sentence-Transformers**
Using this model also is easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences = ["样例数据-1", "样例数据-2"]
model = SentenceTransformer('BAAI/bge-large-zh')
embeddings = model.encode(sentences, normalize_embeddings=True)
print(embeddings)
```
For retrieval task,
each query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
```python
from sentence_transformers import SentenceTransformer
queries = ["手机开不了机怎么办?"]
passages = ["样例段落-1", "样例段落-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
* **Using HuggingFace Transformers**
With transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh')
model = AutoModel.from_pretrained('BAAI/bge-large-zh')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for retrieval task, add an instruction to query
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
More details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [**bge-large-en**](https://huggingface.co./BAAI/bge-large-en) | 1024 | 512 | **63.98** | **53.9** | **46.98** | 85.8 | **59.48** | 81.56 | 32.06 | **76.21** |
| [**bge-base-en**](https://huggingface.co./BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co./thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co./thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co./intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [**bge-small-en**](https://huggingface.co./BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co./hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co./intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co./thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co./intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co./sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co./sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co./bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
| [all-MiniLM-L12-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2) | 384 | 512 | 56.53 | 42.69 | 41.81 | 82.41 | 58.44 | 79.8 | 27.9 | 63.21 |
| [all-MiniLM-L6-v2](https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2) | 384 | 512 | 56.26 | 41.95 | 42.35 | 82.37 | 58.04 | 78.9 | 30.81 | 63.05 |
| [contriever-base-msmarco](https://huggingface.co./nthakur/contriever-base-msmarco) | 768 | 512 | 56.00 | 41.88 | 41.1 | 82.54 | 53.14 | 76.51 | 30.36 | 66.68 |
| [sentence-t5-base](https://huggingface.co./sentence-transformers/sentence-t5-base) | 768 | 512 | 55.27 | 33.63 | 40.21 | 85.18 | 53.09 | 81.14 | 31.39 | 69.81 |
- **C-MTEB**:
We create a benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**bge-large-zh**](https://huggingface.co./BAAI/bge-large-zh) | 1024 | **64.20** | **71.53** | **53.23** | **78.94** | 72.26 | **65.11** | 48.39 |
| [**bge-large-zh-noinstruct**](https://huggingface.co./BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 50.98 | 76.77 | **72.49** | 64.91 | **50.01** |
| [**BAAI/bge-base-zh**](https://huggingface.co./BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 52.05 | 77.5 | 70.98 | 64.91 | 47.63 |
| [**BAAI/bge-small-zh**](https://huggingface.co./BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 46.87 | 70.35 | 67.78 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co./moka-ai/m3e-base) | 768 | 57.10 |56.91 | 48.15 | 63.99 | 70.28 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co./moka-ai/m3e-large) | 1024 | 57.05 |54.75 | 48.64 | 64.3 | 71.22 | 59.66 | 48.88 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 40.61 | 69.56 | 67.38 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co./silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 39.41 | 66.62 | 65.29 | 49.25 | 44.39 |
| [text2vec](https://huggingface.co./shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 41.71 | 67.41 | 65.18 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co./GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 41.98 | 70.86 | 63.42 | 49.16 | 30.02 |
## Train
This section will introduce the way we used to train the general embedding.
The training scripts are in [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md),
and we provide some examples to do [pre-train](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/pretrain/README.md) and [fine-tune](https://github.com/FlagOpen/FlagEmbedding/blob/master/examples/finetune/README.md).
**1. RetroMAE Pre-train**
We pre-train the model following the method [retromae](https://github.com/staoxiao/RetroMAE),
which shows promising improvement in retrieval task ([paper](https://aclanthology.org/2022.emnlp-main.35.pdf)).
The pre-training was conducted on 24 A100(40G) GPUs with a batch size of 720.
In retromae, the mask ratio of encoder and decoder are 0.3, and 0.5 respectively.
We used the AdamW optimizer and the learning rate is 2e-5.
**Pre-training data**:
- English:
- [Pile](https://pile.eleuther.ai/)
- [wikipedia](https://huggingface.co./datasets/wikipedia)
- [msmarco](https://huggingface.co./datasets/Tevatron/msmarco-passage-corpus)
- Chinese:
- Subset of [wudao](https://github.com/BAAI-WuDao/Data)
- [baidu-baike](https://baike.baidu.com/)
**2. Finetune**
We fine-tune the model using a contrastive objective.
The format of input data is a triple`(query, positive, negative)`.
Besides the negative in the triple, we also adopt in-batch negatives strategy.
We employ the cross-device negatives sharing method to share negatives among different GPUs,
which can dramatically **increase the number of negatives**.
We trained our model on 48 A100(40G) GPUs with a large batch size of 32,768 (so there are **65,535** negatives for each query in a batch).
We used the AdamW optimizer and the learning rate is 1e-5.
The temperature for contrastive loss is 0.01.
For the version with `*-instrcution`, we add instruction to the query for retrieval task in the training.
For english, the instruction is `Represent this sentence for searching relevant passages: `;
For chinese, the instruction is `为这个句子生成表示以用于检索相关文章:`.
In the evaluation, the instruction should be added for sentence to passages retrieval task, not be added for other tasks.
The finetune script is accessible in this repository: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
You can easily finetune your model with it.
**Training data**:
- For English, we collect 230M text pairs from [wikipedia](https://huggingface.co./datasets/wikipedia), [cc-net](https://github.com/facebookresearch/cc_net), and so on.
- For chinese, we collect 120M text pairs from [wudao](https://github.com/BAAI-WuDao/Data), [simclue](https://github.com/CLUEbenchmark/SimCLUE) and so on.
**The data collection is to be released in the future.**
We will continually update the embedding models and training codes,
hoping to promote the development of the embedding model community.
## License
FlagEmbedding is licensed under [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.