Augusto777's picture
End of training
82309f0 verified
|
raw
history blame
3.81 kB
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.08064516129032258

swinv2-tiny-patch4-window8-256-Ocular-Toxoplasmosis

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 8.8834
  • Accuracy: 0.0806

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.73 2 8.8834 0.0806
No log 1.82 5 8.8522 0.0806
No log 2.91 8 8.7000 0.0806
8.7803 4.0 11 8.2692 0.0806
8.7803 4.73 13 7.8836 0.0806
8.7803 5.82 16 7.3279 0.0806
8.7803 6.91 19 6.7700 0.0806
7.5847 8.0 22 6.1880 0.0806
7.5847 8.73 24 5.7783 0.0806
7.5847 9.82 27 5.2113 0.0806
5.7442 10.91 30 4.7163 0.0806
5.7442 12.0 33 4.2648 0.0806
5.7442 12.73 35 3.9892 0.0806
5.7442 13.82 38 3.6134 0.0806
4.1747 14.91 41 3.2828 0.0806
4.1747 16.0 44 2.9957 0.0806
4.1747 16.73 46 2.8259 0.0806
4.1747 17.82 49 2.5988 0.0806
3.0458 18.91 52 2.4004 0.0806
3.0458 20.0 55 2.2272 0.0806
3.0458 20.73 57 2.1254 0.0806
2.3301 21.82 60 1.9937 0.0806
2.3301 22.91 63 1.8860 0.0806
2.3301 24.0 66 1.8005 0.0806
2.3301 24.73 68 1.7551 0.0806
1.9107 25.82 71 1.7021 0.0806
1.9107 26.91 74 1.6654 0.0806
1.9107 28.0 77 1.6434 0.0806
1.9107 28.73 79 1.6362 0.0806
1.7061 29.09 80 1.6348 0.0806

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0