Augusto777's picture
End of training
b941168 verified
|
raw
history blame
6.46 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-ve-U13-b-80e
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8478260869565217

swiftformer-xs-ve-U13-b-80e

This model is a fine-tuned version of MBZUAI/swiftformer-xs on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6618
  • Accuracy: 0.8478

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.92 6 1.3859 0.2391
1.3857 2.0 13 1.3834 0.3261
1.3857 2.92 19 1.3789 0.1957
1.3767 4.0 26 1.3666 0.1739
1.3227 4.92 32 1.3565 0.1522
1.3227 6.0 39 1.3887 0.1087
1.1987 6.92 45 1.3719 0.2174
1.1071 8.0 52 1.3271 0.3043
1.1071 8.92 58 1.3562 0.2609
0.9926 10.0 65 1.2306 0.4130
0.8721 10.92 71 1.1953 0.4565
0.8721 12.0 78 1.0754 0.5652
0.7746 12.92 84 0.9931 0.6739
0.6859 14.0 91 0.9979 0.6739
0.6859 14.92 97 0.8964 0.6957
0.5777 16.0 104 0.9186 0.6522
0.5136 16.92 110 0.7950 0.7609
0.5136 18.0 117 0.7794 0.7391
0.5019 18.92 123 0.8645 0.7174
0.3879 20.0 130 0.8773 0.6957
0.3879 20.92 136 0.7304 0.7609
0.3532 22.0 143 0.6918 0.7609
0.3532 22.92 149 0.7882 0.7609
0.3288 24.0 156 0.7132 0.7609
0.2573 24.92 162 0.6645 0.8043
0.2573 26.0 169 0.6618 0.8478
0.239 26.92 175 0.6780 0.8043
0.2018 28.0 182 0.8138 0.6957
0.2018 28.92 188 0.8797 0.6957
0.1961 30.0 195 0.8602 0.7174
0.214 30.92 201 0.8188 0.7391
0.214 32.0 208 0.6956 0.7609
0.1596 32.92 214 0.7981 0.7391
0.172 34.0 221 0.6845 0.7609
0.172 34.92 227 0.9340 0.7174
0.1852 36.0 234 0.9548 0.6522
0.1492 36.92 240 0.7747 0.7609
0.1492 38.0 247 0.9907 0.6304
0.1735 38.92 253 0.8040 0.7174
0.1405 40.0 260 0.6946 0.7609
0.1405 40.92 266 0.7019 0.7609
0.1269 42.0 273 0.8246 0.7174
0.1269 42.92 279 0.9238 0.6739
0.1237 44.0 286 0.9354 0.6957
0.1201 44.92 292 0.7543 0.7391
0.1201 46.0 299 0.7151 0.7174
0.1134 46.92 305 0.7284 0.7174
0.1141 48.0 312 0.7791 0.7609
0.1141 48.92 318 0.7824 0.7391
0.1253 50.0 325 0.7319 0.7609
0.0968 50.92 331 0.7151 0.7609
0.0968 52.0 338 0.7662 0.7609
0.0996 52.92 344 0.8086 0.7826
0.0844 54.0 351 0.8921 0.7609
0.0844 54.92 357 0.8782 0.7609
0.1141 56.0 364 0.7864 0.7391
0.1263 56.92 370 0.7125 0.7609
0.1263 58.0 377 0.6758 0.7609
0.0966 58.92 383 0.7243 0.7609
0.0771 60.0 390 0.7090 0.7609
0.0771 60.92 396 0.7157 0.7609
0.0497 62.0 403 0.7549 0.7609
0.0497 62.92 409 0.7806 0.7609
0.0848 64.0 416 0.7902 0.7391
0.0477 64.92 422 0.7684 0.7391
0.0477 66.0 429 0.8038 0.6957
0.0823 66.92 435 0.7503 0.6957
0.0726 68.0 442 0.7634 0.7609
0.0726 68.92 448 0.7860 0.7826
0.0799 70.0 455 0.7630 0.7609
0.067 70.92 461 0.8094 0.7391
0.067 72.0 468 0.7511 0.7391
0.0893 72.92 474 0.7738 0.7391
0.0738 73.85 480 0.7971 0.7391

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0