Edit model card

swiftformer-xs-dmae-va-U5-42C

This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6744
  • Accuracy: 0.8167

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 1.3856 0.4667
1.3855 1.94 15 1.3819 0.4833
1.3855 2.97 23 1.3687 0.4333
1.3742 4.0 31 1.3189 0.3167
1.3004 4.9 38 1.2501 0.4833
1.3004 5.94 46 1.2268 0.4833
1.1716 6.97 54 1.2115 0.5
1.0686 8.0 62 1.2243 0.5333
1.0686 8.9 69 1.1432 0.55
0.9764 9.94 77 1.0205 0.55
0.873 10.97 85 0.9721 0.6
0.873 12.0 93 0.9221 0.5667
0.7822 12.9 100 0.8593 0.6167
0.664 13.94 108 0.7775 0.7
0.664 14.97 116 0.8117 0.6167
0.5439 16.0 124 0.7553 0.6833
0.5439 16.9 131 0.6697 0.7167
0.496 17.94 139 0.6480 0.7333
0.4563 18.97 147 0.7115 0.7333
0.4563 20.0 155 0.6777 0.7167
0.3831 20.9 162 0.6416 0.7667
0.339 21.94 170 0.7040 0.7
0.339 22.97 178 0.6859 0.7167
0.3033 24.0 186 0.6012 0.7
0.2655 24.9 193 0.5440 0.7833
0.2655 25.94 201 0.6174 0.75
0.2269 26.97 209 0.5745 0.7333
0.2472 28.0 217 0.5688 0.8
0.2472 28.9 224 0.6578 0.75
0.2004 29.94 232 0.5811 0.7833
0.2099 30.97 240 0.6672 0.75
0.2099 32.0 248 0.5927 0.75
0.1834 32.9 255 0.6193 0.7667
0.1834 33.94 263 0.7505 0.7167
0.2248 34.97 271 0.7730 0.7333
0.1571 36.0 279 0.6211 0.7333
0.1571 36.9 286 0.6228 0.7167
0.1983 37.94 294 0.6088 0.7167
0.1629 38.97 302 0.7009 0.75
0.1629 40.0 310 0.7285 0.75
0.1547 40.9 317 0.6401 0.7667
0.1548 41.94 325 0.6123 0.7833
0.1548 42.97 333 0.6317 0.8
0.1566 44.0 341 0.7579 0.7167
0.1361 44.9 348 0.6653 0.7167
0.1361 45.94 356 0.7401 0.7333
0.1273 46.97 364 0.8404 0.7333
0.1312 48.0 372 0.8388 0.75
0.1312 48.9 379 0.7823 0.7667
0.1307 49.94 387 0.6980 0.7167
0.1307 50.97 395 0.7589 0.75
0.1061 52.0 403 0.6644 0.7333
0.1186 52.9 410 0.7057 0.7333
0.1186 53.94 418 0.6744 0.8167
0.1108 54.97 426 0.6328 0.7667
0.1014 56.0 434 0.6402 0.7833
0.1014 56.9 441 0.6631 0.75
0.1082 57.94 449 0.7001 0.7333
0.1118 58.97 457 0.7898 0.7333
0.1118 60.0 465 0.7644 0.7333
0.1051 60.9 472 0.7767 0.7333
0.0979 61.94 480 0.7440 0.7333
0.0979 62.97 488 0.6827 0.7333
0.0834 64.0 496 0.7008 0.7333
0.0834 64.9 503 0.7243 0.7167
0.0963 65.94 511 0.7656 0.7333
0.0989 66.97 519 0.7332 0.7333
0.0989 68.0 527 0.7624 0.7333
0.107 68.9 534 0.7292 0.75
0.0987 69.94 542 0.7169 0.7333
0.0987 70.97 550 0.7462 0.7333
0.0956 72.0 558 0.6656 0.75
0.0956 72.26 560 0.6873 0.7333

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
89
Safetensors
Model size
3.04M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Augusto777/swiftformer-xs-dmae-va-U5-80C

Finetuned
(14)
this model