Augusto777's picture
Model save
d06165f verified
|
raw
history blame
3.7 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-dmae-va-U-SF
    results: []

swiftformer-xs-dmae-va-U-SF

This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6987
  • Accuracy: 0.7431

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 1.3887 0.3119
1.4383 1.94 15 1.3440 0.4128
1.3956 2.97 23 1.3159 0.3761
1.36 4.0 31 1.2907 0.3853
1.36 4.9 38 1.2488 0.4404
1.2912 5.94 46 1.2129 0.4037
1.2387 6.97 54 1.1734 0.4679
1.1607 8.0 62 1.1436 0.5138
1.1607 8.9 69 1.0991 0.4954
1.1224 9.94 77 1.0479 0.5505
1.0547 10.97 85 0.9993 0.5963
1.0137 12.0 93 0.9860 0.6147
0.9652 12.9 100 0.9698 0.6147
0.9652 13.94 108 0.9519 0.6055
0.9217 14.97 116 0.9242 0.6055
0.9122 16.0 124 0.9062 0.6147
0.8763 16.9 131 0.8873 0.6422
0.8763 17.94 139 0.8477 0.6514
0.8471 18.97 147 0.8427 0.6514
0.8331 20.0 155 0.8257 0.6881
0.8167 20.9 162 0.8025 0.6881
0.8022 21.94 170 0.8011 0.6972
0.8022 22.97 178 0.8078 0.6972
0.7996 24.0 186 0.7920 0.7064
0.7962 24.9 193 0.7604 0.7248
0.7268 25.94 201 0.7597 0.6972
0.7268 26.97 209 0.7462 0.6972
0.7477 28.0 217 0.7316 0.7064
0.7411 28.9 224 0.7275 0.7523
0.7415 29.94 232 0.7210 0.7248
0.7159 30.97 240 0.7271 0.7248
0.7159 32.0 248 0.7005 0.7431
0.7322 32.9 255 0.7012 0.7431
0.7124 33.94 263 0.7052 0.7523
0.7194 34.97 271 0.6964 0.7615
0.7194 36.0 279 0.7007 0.7523
0.6903 36.13 280 0.6987 0.7431

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1