metadata
base_model: MBZUAI/swiftformer-xs
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: swiftformer-xs-dmae-va-U-80
results: []
swiftformer-xs-dmae-va-U-80
This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4325
- Accuracy: 0.8257
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9 | 7 | 1.3863 | 0.2844 |
1.4158 | 1.94 | 15 | 1.3760 | 0.3119 |
1.3853 | 2.97 | 23 | 1.3548 | 0.3853 |
1.3745 | 4.0 | 31 | 1.3327 | 0.3394 |
1.3745 | 4.9 | 38 | 1.2938 | 0.4220 |
1.3435 | 5.94 | 46 | 1.2450 | 0.4679 |
1.2681 | 6.97 | 54 | 1.1933 | 0.5596 |
1.1803 | 8.0 | 62 | 1.1410 | 0.4771 |
1.1803 | 8.9 | 69 | 1.1014 | 0.5046 |
1.1277 | 9.94 | 77 | 1.0785 | 0.5321 |
1.0674 | 10.97 | 85 | 1.0440 | 0.5596 |
1.0353 | 12.0 | 93 | 0.9962 | 0.5780 |
0.9859 | 12.9 | 100 | 0.9700 | 0.5872 |
0.9859 | 13.94 | 108 | 0.9402 | 0.6422 |
0.9397 | 14.97 | 116 | 0.9215 | 0.6239 |
0.8959 | 16.0 | 124 | 0.8745 | 0.6606 |
0.8663 | 16.9 | 131 | 0.8561 | 0.6697 |
0.8663 | 17.94 | 139 | 0.8182 | 0.6789 |
0.8405 | 18.97 | 147 | 0.8168 | 0.6514 |
0.8093 | 20.0 | 155 | 0.8039 | 0.6789 |
0.7396 | 20.9 | 162 | 0.7478 | 0.7064 |
0.7588 | 21.94 | 170 | 0.7237 | 0.6972 |
0.7588 | 22.97 | 178 | 0.7031 | 0.7156 |
0.7189 | 24.0 | 186 | 0.6956 | 0.6972 |
0.7111 | 24.9 | 193 | 0.6749 | 0.7248 |
0.6577 | 25.94 | 201 | 0.6758 | 0.6972 |
0.6577 | 26.97 | 209 | 0.6429 | 0.7339 |
0.6681 | 28.0 | 217 | 0.6451 | 0.7064 |
0.6238 | 28.9 | 224 | 0.6368 | 0.7339 |
0.6136 | 29.94 | 232 | 0.6233 | 0.7706 |
0.5934 | 30.97 | 240 | 0.6161 | 0.7706 |
0.5934 | 32.0 | 248 | 0.6268 | 0.7431 |
0.5807 | 32.9 | 255 | 0.5879 | 0.7982 |
0.575 | 33.94 | 263 | 0.5772 | 0.7706 |
0.5409 | 34.97 | 271 | 0.5703 | 0.7798 |
0.5409 | 36.0 | 279 | 0.5603 | 0.7890 |
0.553 | 36.9 | 286 | 0.5560 | 0.8073 |
0.515 | 37.94 | 294 | 0.5639 | 0.7706 |
0.5424 | 38.97 | 302 | 0.5483 | 0.7890 |
0.5193 | 40.0 | 310 | 0.5505 | 0.7798 |
0.5193 | 40.9 | 317 | 0.5323 | 0.8073 |
0.5123 | 41.94 | 325 | 0.5257 | 0.7982 |
0.4719 | 42.97 | 333 | 0.5270 | 0.7798 |
0.4583 | 44.0 | 341 | 0.5305 | 0.7706 |
0.4583 | 44.9 | 348 | 0.5282 | 0.7798 |
0.4568 | 45.94 | 356 | 0.5178 | 0.7890 |
0.4717 | 46.97 | 364 | 0.4945 | 0.7982 |
0.4587 | 48.0 | 372 | 0.4978 | 0.7982 |
0.4587 | 48.9 | 379 | 0.4888 | 0.7890 |
0.4314 | 49.94 | 387 | 0.4867 | 0.7982 |
0.4389 | 50.97 | 395 | 0.4739 | 0.7890 |
0.4115 | 52.0 | 403 | 0.4844 | 0.7982 |
0.4323 | 52.9 | 410 | 0.4819 | 0.7982 |
0.4323 | 53.94 | 418 | 0.4562 | 0.7982 |
0.3855 | 54.97 | 426 | 0.4640 | 0.8073 |
0.4113 | 56.0 | 434 | 0.4474 | 0.8165 |
0.4282 | 56.9 | 441 | 0.4540 | 0.7982 |
0.4282 | 57.94 | 449 | 0.4450 | 0.8165 |
0.4499 | 58.97 | 457 | 0.4497 | 0.8165 |
0.4179 | 60.0 | 465 | 0.4400 | 0.8073 |
0.4213 | 60.9 | 472 | 0.4392 | 0.8073 |
0.4176 | 61.94 | 480 | 0.4325 | 0.8257 |
0.4176 | 62.97 | 488 | 0.4296 | 0.8165 |
0.4083 | 64.0 | 496 | 0.4388 | 0.8165 |
0.3853 | 64.9 | 503 | 0.4392 | 0.8073 |
0.3647 | 65.94 | 511 | 0.4349 | 0.8073 |
0.3647 | 66.97 | 519 | 0.4344 | 0.8257 |
0.3927 | 68.0 | 527 | 0.4348 | 0.8073 |
0.3833 | 68.9 | 534 | 0.4352 | 0.8073 |
0.3932 | 69.94 | 542 | 0.4294 | 0.8165 |
0.4085 | 70.97 | 550 | 0.4276 | 0.8073 |
0.4085 | 72.0 | 558 | 0.4232 | 0.8073 |
0.4029 | 72.26 | 560 | 0.4359 | 0.8165 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.1