Augusto777's picture
End of training
c66ce13 verified
|
raw
history blame
3.7 kB
metadata
base_model: MBZUAI/swiftformer-xs
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: swiftformer-xs-dmae-va-U-80
    results: []

swiftformer-xs-dmae-va-U-80

This model is a fine-tuned version of MBZUAI/swiftformer-xs on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6494
  • Accuracy: 0.8165

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.9 7 1.3781 0.3486
1.3901 1.94 15 1.3538 0.3303
1.3561 2.97 23 1.3091 0.3761
1.2933 4.0 31 1.2623 0.4220
1.2933 4.9 38 1.2065 0.5138
1.2274 5.94 46 1.1353 0.5413
1.1686 6.97 54 1.0854 0.6147
1.097 8.0 62 1.0489 0.6330
1.097 8.9 69 1.0185 0.6606
1.0349 9.94 77 0.9682 0.6422
1.0161 10.97 85 0.9511 0.6055
0.9633 12.0 93 0.9009 0.6606
0.939 12.9 100 0.9055 0.6514
0.939 13.94 108 0.8781 0.6697
0.9036 14.97 116 0.8494 0.7248
0.8687 16.0 124 0.8503 0.6789
0.8535 16.9 131 0.8164 0.7248
0.8535 17.94 139 0.7883 0.7615
0.8306 18.97 147 0.7667 0.7615
0.8047 20.0 155 0.7600 0.7523
0.7735 20.9 162 0.7331 0.7615
0.784 21.94 170 0.7295 0.7523
0.784 22.97 178 0.7281 0.7431
0.7596 24.0 186 0.7045 0.7615
0.7609 24.9 193 0.6915 0.7706
0.7307 25.94 201 0.6970 0.8073
0.7307 26.97 209 0.6796 0.7615
0.7263 28.0 217 0.6615 0.7706
0.6933 28.9 224 0.6628 0.7798
0.6914 29.94 232 0.6596 0.8073
0.7192 30.97 240 0.6453 0.7982
0.7192 32.0 248 0.6569 0.7798
0.6956 32.9 255 0.6494 0.8165
0.7037 33.94 263 0.6478 0.8073
0.669 34.97 271 0.6415 0.7798
0.669 36.0 279 0.6441 0.7890
0.6715 36.13 280 0.6445 0.7798

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1