|
--- |
|
base_model: MBZUAI/swiftformer-xs |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: swiftformer-xs-dmae-va-U-40 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# swiftformer-xs-dmae-va-U-40 |
|
|
|
This model is a fine-tuned version of [MBZUAI/swiftformer-xs](https://huggingface.co./MBZUAI/swiftformer-xs) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6423 |
|
- Accuracy: 0.8165 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 128 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 40 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| No log | 0.9 | 7 | 1.3883 | 0.3211 | |
|
| 1.4011 | 1.94 | 15 | 1.3383 | 0.3578 | |
|
| 1.3646 | 2.97 | 23 | 1.2802 | 0.4404 | |
|
| 1.315 | 4.0 | 31 | 1.2194 | 0.4495 | |
|
| 1.315 | 4.9 | 38 | 1.1718 | 0.5229 | |
|
| 1.2634 | 5.94 | 46 | 1.1279 | 0.5046 | |
|
| 1.1949 | 6.97 | 54 | 1.0761 | 0.5872 | |
|
| 1.1136 | 8.0 | 62 | 1.0224 | 0.6330 | |
|
| 1.1136 | 8.9 | 69 | 0.9976 | 0.6239 | |
|
| 1.0824 | 9.94 | 77 | 0.9518 | 0.6606 | |
|
| 1.0212 | 10.97 | 85 | 0.9117 | 0.6697 | |
|
| 0.9566 | 12.0 | 93 | 0.8973 | 0.6881 | |
|
| 0.935 | 12.9 | 100 | 0.8705 | 0.7064 | |
|
| 0.935 | 13.94 | 108 | 0.8559 | 0.7156 | |
|
| 0.8826 | 14.97 | 116 | 0.8371 | 0.7156 | |
|
| 0.8688 | 16.0 | 124 | 0.8252 | 0.7156 | |
|
| 0.8436 | 16.9 | 131 | 0.8211 | 0.6972 | |
|
| 0.8436 | 17.94 | 139 | 0.8040 | 0.7339 | |
|
| 0.8155 | 18.97 | 147 | 0.7625 | 0.7431 | |
|
| 0.7831 | 20.0 | 155 | 0.7452 | 0.7431 | |
|
| 0.7826 | 20.9 | 162 | 0.7279 | 0.7431 | |
|
| 0.7499 | 21.94 | 170 | 0.7148 | 0.7431 | |
|
| 0.7499 | 22.97 | 178 | 0.7061 | 0.7523 | |
|
| 0.7539 | 24.0 | 186 | 0.7026 | 0.7523 | |
|
| 0.7453 | 24.9 | 193 | 0.6819 | 0.7890 | |
|
| 0.7174 | 25.94 | 201 | 0.6837 | 0.7706 | |
|
| 0.7174 | 26.97 | 209 | 0.6743 | 0.7798 | |
|
| 0.7083 | 28.0 | 217 | 0.6706 | 0.7798 | |
|
| 0.6813 | 28.9 | 224 | 0.6644 | 0.8073 | |
|
| 0.7107 | 29.94 | 232 | 0.6423 | 0.8165 | |
|
| 0.6912 | 30.97 | 240 | 0.6419 | 0.7890 | |
|
| 0.6912 | 32.0 | 248 | 0.6465 | 0.7890 | |
|
| 0.7031 | 32.9 | 255 | 0.6346 | 0.8073 | |
|
| 0.6647 | 33.94 | 263 | 0.6347 | 0.8073 | |
|
| 0.6799 | 34.97 | 271 | 0.6476 | 0.7982 | |
|
| 0.6799 | 36.0 | 279 | 0.6429 | 0.7982 | |
|
| 0.6774 | 36.13 | 280 | 0.6518 | 0.7890 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.1 |
|
|