metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: beit-base-patch16-224-OT-2
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8387096774193549
beit-base-patch16-224-OT-2
This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.5047
- Accuracy: 0.8387
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3.5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.91 | 5 | 1.8532 | 0.0806 |
1.7494 | 2.0 | 11 | 1.7818 | 0.0806 |
1.7494 | 2.91 | 16 | 1.6613 | 0.0806 |
1.6235 | 4.0 | 22 | 1.4651 | 0.0806 |
1.6235 | 4.91 | 27 | 1.3293 | 0.0806 |
1.3836 | 6.0 | 33 | 1.2034 | 0.5161 |
1.3836 | 6.91 | 38 | 1.1748 | 0.3710 |
1.2192 | 8.0 | 44 | 1.0815 | 0.4677 |
1.2192 | 8.91 | 49 | 1.0238 | 0.5 |
1.093 | 10.0 | 55 | 1.0225 | 0.4516 |
0.9938 | 10.91 | 60 | 0.9650 | 0.6452 |
0.9938 | 12.0 | 66 | 0.9314 | 0.6935 |
0.9235 | 12.91 | 71 | 0.9490 | 0.6452 |
0.9235 | 14.0 | 77 | 0.8234 | 0.7258 |
0.8258 | 14.91 | 82 | 0.8159 | 0.7258 |
0.8258 | 16.0 | 88 | 0.7514 | 0.7419 |
0.716 | 16.91 | 93 | 0.7469 | 0.7419 |
0.716 | 18.0 | 99 | 0.6734 | 0.7903 |
0.6026 | 18.91 | 104 | 0.6926 | 0.7581 |
0.5725 | 20.0 | 110 | 0.7952 | 0.7258 |
0.5725 | 20.91 | 115 | 0.6284 | 0.7742 |
0.554 | 22.0 | 121 | 0.6317 | 0.7742 |
0.554 | 22.91 | 126 | 0.6361 | 0.7419 |
0.5162 | 24.0 | 132 | 0.5501 | 0.8226 |
0.5162 | 24.91 | 137 | 0.6278 | 0.7581 |
0.4768 | 26.0 | 143 | 0.5868 | 0.7903 |
0.4768 | 26.91 | 148 | 0.5047 | 0.8387 |
0.4488 | 28.0 | 154 | 0.5264 | 0.7903 |
0.4488 | 28.91 | 159 | 0.4942 | 0.8387 |
0.4281 | 30.0 | 165 | 0.5127 | 0.8387 |
0.4126 | 30.91 | 170 | 0.5027 | 0.8387 |
0.4126 | 32.0 | 176 | 0.5387 | 0.7742 |
0.4326 | 32.91 | 181 | 0.5251 | 0.7903 |
0.4326 | 34.0 | 187 | 0.5091 | 0.8065 |
0.3765 | 34.91 | 192 | 0.5142 | 0.8065 |
0.3765 | 36.0 | 198 | 0.5142 | 0.7903 |
0.3913 | 36.36 | 200 | 0.5144 | 0.7903 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0