Augusto777's picture
End of training
d82dc21 verified
|
raw
history blame
4.17 kB
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: beit-base-patch16-224-OT-2
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8387096774193549

beit-base-patch16-224-OT-2

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5047
  • Accuracy: 0.8387

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.91 5 1.8532 0.0806
1.7494 2.0 11 1.7818 0.0806
1.7494 2.91 16 1.6613 0.0806
1.6235 4.0 22 1.4651 0.0806
1.6235 4.91 27 1.3293 0.0806
1.3836 6.0 33 1.2034 0.5161
1.3836 6.91 38 1.1748 0.3710
1.2192 8.0 44 1.0815 0.4677
1.2192 8.91 49 1.0238 0.5
1.093 10.0 55 1.0225 0.4516
0.9938 10.91 60 0.9650 0.6452
0.9938 12.0 66 0.9314 0.6935
0.9235 12.91 71 0.9490 0.6452
0.9235 14.0 77 0.8234 0.7258
0.8258 14.91 82 0.8159 0.7258
0.8258 16.0 88 0.7514 0.7419
0.716 16.91 93 0.7469 0.7419
0.716 18.0 99 0.6734 0.7903
0.6026 18.91 104 0.6926 0.7581
0.5725 20.0 110 0.7952 0.7258
0.5725 20.91 115 0.6284 0.7742
0.554 22.0 121 0.6317 0.7742
0.554 22.91 126 0.6361 0.7419
0.5162 24.0 132 0.5501 0.8226
0.5162 24.91 137 0.6278 0.7581
0.4768 26.0 143 0.5868 0.7903
0.4768 26.91 148 0.5047 0.8387
0.4488 28.0 154 0.5264 0.7903
0.4488 28.91 159 0.4942 0.8387
0.4281 30.0 165 0.5127 0.8387
0.4126 30.91 170 0.5027 0.8387
0.4126 32.0 176 0.5387 0.7742
0.4326 32.91 181 0.5251 0.7903
0.4326 34.0 187 0.5091 0.8065
0.3765 34.91 192 0.5142 0.8065
0.3765 36.0 198 0.5142 0.7903
0.3913 36.36 200 0.5144 0.7903

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0