Augusto777's picture
End of training
5271712 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: Swin-DMAE-H-DA-REVAL-80
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.75

Swin-DMAE-H-DA-REVAL-80

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0766
  • Accuracy: 0.75

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.608 0.97 22 1.6091 0.25
1.5899 1.98 45 1.5960 0.1923
1.4759 2.99 68 1.4430 0.3462
1.1012 4.0 91 1.3213 0.5192
0.8965 4.97 113 1.1938 0.4231
0.7214 5.98 136 1.1870 0.4615
0.6757 6.99 159 1.2117 0.5
0.5529 8.0 182 1.1976 0.4615
0.5279 8.97 204 1.1250 0.5192
0.4701 9.98 227 1.0999 0.5577
0.3721 10.99 250 0.7842 0.6538
0.3631 12.0 273 1.1728 0.6154
0.3384 12.97 295 1.2413 0.5769
0.2531 13.98 318 0.9144 0.6346
0.2753 14.99 341 0.8959 0.6923
0.2611 16.0 364 1.1399 0.6538
0.2072 16.97 386 1.0732 0.7115
0.2532 17.98 409 1.1922 0.7115
0.1633 18.99 432 1.0600 0.6731
0.1946 20.0 455 1.2289 0.6538
0.2214 20.97 477 1.3591 0.6731
0.1666 21.98 500 1.0736 0.7115
0.141 22.99 523 1.0315 0.6923
0.1275 24.0 546 1.0766 0.75
0.136 24.97 568 1.1796 0.7115
0.1402 25.98 591 1.0339 0.7115
0.1336 26.99 614 1.3446 0.6154
0.1218 28.0 637 1.2967 0.7115
0.1034 28.97 659 1.5955 0.6538
0.1196 29.98 682 1.5721 0.5769
0.1368 30.99 705 1.8208 0.6346
0.1477 32.0 728 1.4237 0.6923
0.1299 32.97 750 1.4061 0.7115
0.1111 33.98 773 1.6664 0.6346
0.068 34.99 796 1.7432 0.6538
0.1142 36.0 819 1.4518 0.6923
0.1258 36.97 841 1.7217 0.6346
0.1055 37.98 864 1.6348 0.6154
0.1049 38.99 887 1.8378 0.6346
0.0822 40.0 910 1.6760 0.6731
0.1114 40.97 932 1.7310 0.6346
0.0704 41.98 955 1.7105 0.6538
0.0983 42.99 978 1.8320 0.5962
0.0909 44.0 1001 1.5632 0.6346
0.0991 44.97 1023 1.7606 0.6731
0.0658 45.98 1046 1.5927 0.6538
0.0412 46.99 1069 1.4660 0.6538
0.0919 48.0 1092 1.3294 0.6731
0.0726 48.97 1114 1.5551 0.6346
0.0554 49.98 1137 1.7157 0.6154
0.0585 50.99 1160 1.8280 0.5962
0.0607 52.0 1183 1.6142 0.6538
0.0719 52.97 1205 1.9924 0.5962
0.0877 53.98 1228 1.7806 0.6346
0.0743 54.99 1251 1.9820 0.6538
0.0464 56.0 1274 1.9449 0.6346
0.077 56.97 1296 1.6826 0.6923
0.073 57.98 1319 1.7594 0.6538
0.0623 58.99 1342 1.8303 0.6346
0.0383 60.0 1365 1.8124 0.6154
0.0526 60.97 1387 1.8164 0.6923
0.0679 61.98 1410 1.8586 0.6731
0.0625 62.99 1433 1.9150 0.6346
0.0482 64.0 1456 1.9622 0.6346
0.0646 64.97 1478 1.9476 0.6154
0.0594 65.98 1501 1.5958 0.6923
0.0568 66.99 1524 1.8275 0.6731
0.0662 68.0 1547 1.7576 0.6731
0.0428 68.97 1569 1.9325 0.6538
0.0433 69.98 1592 1.8206 0.6731
0.0511 70.99 1615 1.9029 0.6538
0.0502 72.0 1638 1.8821 0.6538
0.0544 72.97 1660 1.9535 0.6538
0.0399 73.98 1683 1.8455 0.6538
0.0561 74.99 1706 1.8290 0.6538
0.041 76.0 1729 1.8427 0.6538
0.0582 76.97 1751 1.8591 0.6538
0.0315 77.36 1760 1.8612 0.6538

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0