Swin-DA2-final-AMD-Wet
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 1.0322
- Accuracy: 0.8068
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 80
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.6093 | 0.97 | 15 | 1.6090 | 0.2045 |
1.6042 | 2.0 | 31 | 1.6055 | 0.2045 |
1.586 | 2.97 | 46 | 1.5730 | 0.1932 |
1.4855 | 4.0 | 62 | 1.4935 | 0.2614 |
1.3738 | 4.97 | 77 | 1.3273 | 0.5 |
1.1557 | 6.0 | 93 | 1.0828 | 0.625 |
1.0441 | 6.97 | 108 | 0.8971 | 0.6023 |
0.9358 | 8.0 | 124 | 0.7635 | 0.6818 |
0.7707 | 8.97 | 139 | 0.8718 | 0.6477 |
0.7161 | 10.0 | 155 | 0.6903 | 0.7727 |
0.6799 | 10.97 | 170 | 0.8108 | 0.7273 |
0.6402 | 12.0 | 186 | 0.7147 | 0.7273 |
0.5131 | 12.97 | 201 | 0.7521 | 0.75 |
0.5262 | 14.0 | 217 | 0.7967 | 0.7273 |
0.4757 | 14.97 | 232 | 0.7084 | 0.7614 |
0.4758 | 16.0 | 248 | 0.7529 | 0.7727 |
0.4184 | 16.97 | 263 | 0.7769 | 0.7727 |
0.398 | 18.0 | 279 | 0.8496 | 0.7386 |
0.3591 | 18.97 | 294 | 0.8204 | 0.7273 |
0.3536 | 20.0 | 310 | 0.8589 | 0.7614 |
0.2589 | 20.97 | 325 | 0.9754 | 0.7045 |
0.3218 | 22.0 | 341 | 1.0231 | 0.7159 |
0.3151 | 22.97 | 356 | 0.9173 | 0.7386 |
0.2708 | 24.0 | 372 | 0.9598 | 0.7273 |
0.2802 | 24.97 | 387 | 0.9050 | 0.7386 |
0.3114 | 26.0 | 403 | 0.8725 | 0.7727 |
0.2794 | 26.97 | 418 | 0.9579 | 0.7386 |
0.26 | 28.0 | 434 | 1.0064 | 0.7273 |
0.2961 | 28.97 | 449 | 1.1056 | 0.75 |
0.297 | 30.0 | 465 | 0.8761 | 0.7727 |
0.2044 | 30.97 | 480 | 1.0461 | 0.7614 |
0.1884 | 32.0 | 496 | 0.9889 | 0.75 |
0.2156 | 32.97 | 511 | 1.0186 | 0.7727 |
0.194 | 34.0 | 527 | 1.0900 | 0.7727 |
0.2085 | 34.97 | 542 | 1.0762 | 0.75 |
0.1909 | 36.0 | 558 | 1.0325 | 0.7841 |
0.1551 | 36.97 | 573 | 1.1497 | 0.7045 |
0.2106 | 38.0 | 589 | 1.0304 | 0.7727 |
0.1771 | 38.97 | 604 | 1.0794 | 0.7841 |
0.1567 | 40.0 | 620 | 1.0634 | 0.7955 |
0.1856 | 40.97 | 635 | 1.0716 | 0.7614 |
0.185 | 42.0 | 651 | 1.0322 | 0.8068 |
0.1239 | 42.97 | 666 | 1.1516 | 0.7614 |
0.1617 | 44.0 | 682 | 1.0322 | 0.7841 |
0.1221 | 44.97 | 697 | 1.0553 | 0.8068 |
0.1433 | 46.0 | 713 | 1.0597 | 0.7727 |
0.216 | 46.97 | 728 | 1.1586 | 0.75 |
0.1807 | 48.0 | 744 | 1.0873 | 0.7727 |
0.185 | 48.97 | 759 | 1.2490 | 0.7727 |
0.1554 | 50.0 | 775 | 1.2223 | 0.7614 |
0.1359 | 50.97 | 790 | 1.2345 | 0.75 |
0.0929 | 52.0 | 806 | 1.1833 | 0.7614 |
0.1379 | 52.97 | 821 | 1.2581 | 0.7386 |
0.145 | 54.0 | 837 | 1.3023 | 0.75 |
0.134 | 54.97 | 852 | 1.2469 | 0.75 |
0.1974 | 56.0 | 868 | 1.2671 | 0.7386 |
0.122 | 56.97 | 883 | 1.2676 | 0.7273 |
0.1487 | 58.0 | 899 | 1.2846 | 0.7273 |
0.1282 | 58.97 | 914 | 1.1780 | 0.75 |
0.0989 | 60.0 | 930 | 1.2320 | 0.75 |
0.0997 | 60.97 | 945 | 1.2792 | 0.7386 |
0.1058 | 62.0 | 961 | 1.2126 | 0.7614 |
0.1105 | 62.97 | 976 | 1.2561 | 0.7386 |
0.0957 | 64.0 | 992 | 1.1702 | 0.7614 |
0.1326 | 64.97 | 1007 | 1.1839 | 0.75 |
0.0838 | 66.0 | 1023 | 1.2728 | 0.7386 |
0.1163 | 66.97 | 1038 | 1.2736 | 0.75 |
0.0926 | 68.0 | 1054 | 1.2641 | 0.75 |
0.102 | 68.97 | 1069 | 1.3310 | 0.75 |
0.0996 | 70.0 | 1085 | 1.3120 | 0.7273 |
0.081 | 70.97 | 1100 | 1.3358 | 0.7273 |
0.1305 | 72.0 | 1116 | 1.3440 | 0.7273 |
0.1131 | 72.97 | 1131 | 1.3126 | 0.7273 |
0.0883 | 74.0 | 1147 | 1.2848 | 0.7386 |
0.0873 | 74.97 | 1162 | 1.2802 | 0.7386 |
0.0991 | 76.0 | 1178 | 1.2711 | 0.75 |
0.0881 | 76.97 | 1193 | 1.2746 | 0.75 |
0.0895 | 77.42 | 1200 | 1.2752 | 0.75 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model's library.
Model tree for Augusto777/Swin-DA2-final-AMD-Wet
Base model
microsoft/swinv2-tiny-patch4-window8-256Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.807