Swin-DA2-final-AMD-Wet

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.0322
  • Accuracy: 0.8068

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.6093 0.97 15 1.6090 0.2045
1.6042 2.0 31 1.6055 0.2045
1.586 2.97 46 1.5730 0.1932
1.4855 4.0 62 1.4935 0.2614
1.3738 4.97 77 1.3273 0.5
1.1557 6.0 93 1.0828 0.625
1.0441 6.97 108 0.8971 0.6023
0.9358 8.0 124 0.7635 0.6818
0.7707 8.97 139 0.8718 0.6477
0.7161 10.0 155 0.6903 0.7727
0.6799 10.97 170 0.8108 0.7273
0.6402 12.0 186 0.7147 0.7273
0.5131 12.97 201 0.7521 0.75
0.5262 14.0 217 0.7967 0.7273
0.4757 14.97 232 0.7084 0.7614
0.4758 16.0 248 0.7529 0.7727
0.4184 16.97 263 0.7769 0.7727
0.398 18.0 279 0.8496 0.7386
0.3591 18.97 294 0.8204 0.7273
0.3536 20.0 310 0.8589 0.7614
0.2589 20.97 325 0.9754 0.7045
0.3218 22.0 341 1.0231 0.7159
0.3151 22.97 356 0.9173 0.7386
0.2708 24.0 372 0.9598 0.7273
0.2802 24.97 387 0.9050 0.7386
0.3114 26.0 403 0.8725 0.7727
0.2794 26.97 418 0.9579 0.7386
0.26 28.0 434 1.0064 0.7273
0.2961 28.97 449 1.1056 0.75
0.297 30.0 465 0.8761 0.7727
0.2044 30.97 480 1.0461 0.7614
0.1884 32.0 496 0.9889 0.75
0.2156 32.97 511 1.0186 0.7727
0.194 34.0 527 1.0900 0.7727
0.2085 34.97 542 1.0762 0.75
0.1909 36.0 558 1.0325 0.7841
0.1551 36.97 573 1.1497 0.7045
0.2106 38.0 589 1.0304 0.7727
0.1771 38.97 604 1.0794 0.7841
0.1567 40.0 620 1.0634 0.7955
0.1856 40.97 635 1.0716 0.7614
0.185 42.0 651 1.0322 0.8068
0.1239 42.97 666 1.1516 0.7614
0.1617 44.0 682 1.0322 0.7841
0.1221 44.97 697 1.0553 0.8068
0.1433 46.0 713 1.0597 0.7727
0.216 46.97 728 1.1586 0.75
0.1807 48.0 744 1.0873 0.7727
0.185 48.97 759 1.2490 0.7727
0.1554 50.0 775 1.2223 0.7614
0.1359 50.97 790 1.2345 0.75
0.0929 52.0 806 1.1833 0.7614
0.1379 52.97 821 1.2581 0.7386
0.145 54.0 837 1.3023 0.75
0.134 54.97 852 1.2469 0.75
0.1974 56.0 868 1.2671 0.7386
0.122 56.97 883 1.2676 0.7273
0.1487 58.0 899 1.2846 0.7273
0.1282 58.97 914 1.1780 0.75
0.0989 60.0 930 1.2320 0.75
0.0997 60.97 945 1.2792 0.7386
0.1058 62.0 961 1.2126 0.7614
0.1105 62.97 976 1.2561 0.7386
0.0957 64.0 992 1.1702 0.7614
0.1326 64.97 1007 1.1839 0.75
0.0838 66.0 1023 1.2728 0.7386
0.1163 66.97 1038 1.2736 0.75
0.0926 68.0 1054 1.2641 0.75
0.102 68.97 1069 1.3310 0.75
0.0996 70.0 1085 1.3120 0.7273
0.081 70.97 1100 1.3358 0.7273
0.1305 72.0 1116 1.3440 0.7273
0.1131 72.97 1131 1.3126 0.7273
0.0883 74.0 1147 1.2848 0.7386
0.0873 74.97 1162 1.2802 0.7386
0.0991 76.0 1178 1.2711 0.75
0.0881 76.97 1193 1.2746 0.75
0.0895 77.42 1200 1.2752 0.75

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
0
Safetensors
Model size
27.6M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model's library.

Model tree for Augusto777/Swin-DA2-final-AMD-Wet

Finetuned
(104)
this model

Evaluation results