metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: SWv2-DMAE-H-6-ps-clean-fix-U-40-Cross-6
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: imagefolder
type: imagefolder
config: default
split: train
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8269230769230769
SWv2-DMAE-H-6-ps-clean-fix-U-40-Cross-6
This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4696
- Accuracy: 0.8269
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 40
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.3847 | 0.96 | 11 | 1.3617 | 0.3462 |
1.3874 | 2.0 | 23 | 1.3383 | 0.3462 |
1.3594 | 2.96 | 34 | 1.2585 | 0.5577 |
1.2304 | 4.0 | 46 | 1.1284 | 0.4231 |
1.0706 | 4.96 | 57 | 0.9184 | 0.5769 |
0.9507 | 6.0 | 69 | 0.8399 | 0.6346 |
0.7358 | 6.96 | 80 | 0.8507 | 0.5 |
0.6664 | 8.0 | 92 | 0.6480 | 0.75 |
0.5935 | 8.96 | 103 | 0.5550 | 0.7692 |
0.565 | 10.0 | 115 | 0.6149 | 0.6731 |
0.4619 | 10.96 | 126 | 0.5001 | 0.8077 |
0.4954 | 12.0 | 138 | 0.4696 | 0.8269 |
0.4313 | 12.96 | 149 | 0.5613 | 0.7308 |
0.4299 | 14.0 | 161 | 0.5546 | 0.7885 |
0.4213 | 14.96 | 172 | 0.5084 | 0.7692 |
0.3764 | 16.0 | 184 | 0.6273 | 0.7115 |
0.3745 | 16.96 | 195 | 0.8686 | 0.6346 |
0.3935 | 18.0 | 207 | 0.5955 | 0.7692 |
0.3005 | 18.96 | 218 | 0.5678 | 0.8077 |
0.2867 | 20.0 | 230 | 0.5452 | 0.8077 |
0.2801 | 20.96 | 241 | 0.5286 | 0.8077 |
0.3213 | 22.0 | 253 | 0.6355 | 0.7692 |
0.273 | 22.96 | 264 | 0.6812 | 0.75 |
0.2667 | 24.0 | 276 | 0.5957 | 0.7692 |
0.2859 | 24.96 | 287 | 0.6318 | 0.75 |
0.2629 | 26.0 | 299 | 0.5229 | 0.7885 |
0.2452 | 26.96 | 310 | 0.7775 | 0.7308 |
0.2177 | 28.0 | 322 | 0.6332 | 0.7692 |
0.2421 | 28.96 | 333 | 0.7003 | 0.75 |
0.2114 | 30.0 | 345 | 0.5935 | 0.7885 |
0.204 | 30.96 | 356 | 0.6657 | 0.7692 |
0.2027 | 32.0 | 368 | 0.6497 | 0.7692 |
0.2348 | 32.96 | 379 | 0.6382 | 0.7692 |
0.2081 | 34.0 | 391 | 0.5660 | 0.8269 |
0.1688 | 34.96 | 402 | 0.6342 | 0.7692 |
0.1752 | 36.0 | 414 | 0.6113 | 0.7692 |
0.1845 | 36.96 | 425 | 0.5766 | 0.7885 |
0.1938 | 38.0 | 437 | 0.5906 | 0.7692 |
0.1804 | 38.26 | 440 | 0.5907 | 0.7885 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu118
- Datasets 2.16.1
- Tokenizers 0.15.0