Augusto777's picture
End of training
486eae2 verified
metadata
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: SWv2-DMAE-H-6-ps-clean-fix-U-40-Cross-6
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8269230769230769

SWv2-DMAE-H-6-ps-clean-fix-U-40-Cross-6

This model is a fine-tuned version of microsoft/swinv2-tiny-patch4-window8-256 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4696
  • Accuracy: 0.8269

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 4e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.3847 0.96 11 1.3617 0.3462
1.3874 2.0 23 1.3383 0.3462
1.3594 2.96 34 1.2585 0.5577
1.2304 4.0 46 1.1284 0.4231
1.0706 4.96 57 0.9184 0.5769
0.9507 6.0 69 0.8399 0.6346
0.7358 6.96 80 0.8507 0.5
0.6664 8.0 92 0.6480 0.75
0.5935 8.96 103 0.5550 0.7692
0.565 10.0 115 0.6149 0.6731
0.4619 10.96 126 0.5001 0.8077
0.4954 12.0 138 0.4696 0.8269
0.4313 12.96 149 0.5613 0.7308
0.4299 14.0 161 0.5546 0.7885
0.4213 14.96 172 0.5084 0.7692
0.3764 16.0 184 0.6273 0.7115
0.3745 16.96 195 0.8686 0.6346
0.3935 18.0 207 0.5955 0.7692
0.3005 18.96 218 0.5678 0.8077
0.2867 20.0 230 0.5452 0.8077
0.2801 20.96 241 0.5286 0.8077
0.3213 22.0 253 0.6355 0.7692
0.273 22.96 264 0.6812 0.75
0.2667 24.0 276 0.5957 0.7692
0.2859 24.96 287 0.6318 0.75
0.2629 26.0 299 0.5229 0.7885
0.2452 26.96 310 0.7775 0.7308
0.2177 28.0 322 0.6332 0.7692
0.2421 28.96 333 0.7003 0.75
0.2114 30.0 345 0.5935 0.7885
0.204 30.96 356 0.6657 0.7692
0.2027 32.0 368 0.6497 0.7692
0.2348 32.96 379 0.6382 0.7692
0.2081 34.0 391 0.5660 0.8269
0.1688 34.96 402 0.6342 0.7692
0.1752 36.0 414 0.6113 0.7692
0.1845 36.96 425 0.5766 0.7885
0.1938 38.0 437 0.5906 0.7692
0.1804 38.26 440 0.5907 0.7885

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0