Augusto777's picture
End of training
1e567b6 verified
metadata
license: apache-2.0
base_model: microsoft/beit-base-patch16-224
tags:
  - generated_from_trainer
datasets:
  - imagefolder
metrics:
  - accuracy
model-index:
  - name: BEiT-DMAE-DA-REVAL-80-35e-05
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: imagefolder
          type: imagefolder
          config: default
          split: validation
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.8913043478260869

BEiT-DMAE-DA-REVAL-80-35e-05

This model is a fine-tuned version of microsoft/beit-base-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4981
  • Accuracy: 0.8913

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 80

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.528 0.96 11 1.2944 0.4565
1.3955 2.0 23 1.3459 0.5
1.3036 2.96 34 1.2487 0.3696
1.1708 4.0 46 1.0742 0.5217
1.0545 4.96 57 0.9917 0.5435
0.9352 6.0 69 0.9326 0.5435
0.7648 6.96 80 0.9982 0.4348
0.7161 8.0 92 0.8967 0.5870
0.6157 8.96 103 0.9164 0.6087
0.6128 10.0 115 0.9261 0.6522
0.4791 10.96 126 0.7729 0.7391
0.4494 12.0 138 0.6894 0.8043
0.4213 12.96 149 0.7138 0.8043
0.3341 14.0 161 0.9143 0.7174
0.3114 14.96 172 0.6721 0.7609
0.322 16.0 184 0.7821 0.7609
0.2975 16.96 195 0.7998 0.7826
0.2694 18.0 207 0.6825 0.8043
0.2104 18.96 218 0.6983 0.8043
0.2309 20.0 230 0.7812 0.7174
0.1867 20.96 241 0.7511 0.7609
0.17 22.0 253 0.9706 0.7391
0.1915 22.96 264 0.7702 0.8043
0.2309 24.0 276 0.7152 0.8043
0.1813 24.96 287 0.7917 0.7826
0.1399 26.0 299 0.7918 0.7391
0.1481 26.96 310 0.7052 0.8261
0.2046 28.0 322 0.5693 0.8478
0.1912 28.96 333 0.6074 0.8261
0.1467 30.0 345 0.9355 0.7609
0.1263 30.96 356 0.6719 0.8261
0.1357 32.0 368 0.7006 0.7826
0.1117 32.96 379 0.7690 0.7609
0.1294 34.0 391 0.9282 0.7609
0.139 34.96 402 0.7608 0.7609
0.131 36.0 414 0.8221 0.8043
0.1237 36.96 425 0.9204 0.7391
0.1148 38.0 437 0.5724 0.8261
0.1131 38.96 448 0.9197 0.7609
0.1171 40.0 460 0.8922 0.7174
0.0833 40.96 471 0.6172 0.8043
0.1026 42.0 483 0.6637 0.7609
0.09 42.96 494 0.8515 0.7826
0.0894 44.0 506 0.5513 0.8696
0.0842 44.96 517 0.8008 0.8261
0.0824 46.0 529 0.6873 0.8696
0.1004 46.96 540 1.0546 0.7826
0.0915 48.0 552 0.8237 0.7609
0.0642 48.96 563 0.4981 0.8913
0.0872 50.0 575 0.7128 0.8696
0.0755 50.96 586 0.7991 0.8043
0.0773 52.0 598 0.8565 0.7826
0.0853 52.96 609 0.7463 0.8478
0.0717 54.0 621 0.7527 0.8043
0.0919 54.96 632 0.6984 0.8478
0.0913 56.0 644 0.7035 0.8043
0.0672 56.96 655 0.6481 0.8696
0.0691 58.0 667 0.7666 0.8696
0.0733 58.96 678 0.7665 0.8478
0.0982 60.0 690 0.8573 0.8478
0.0791 60.96 701 0.7859 0.8696
0.0559 62.0 713 0.7715 0.8261
0.0725 62.96 724 0.8548 0.8478
0.065 64.0 736 0.8533 0.8478
0.0844 64.96 747 0.8175 0.8478
0.0664 66.0 759 0.7743 0.8261
0.0696 66.96 770 0.8106 0.8696
0.0567 68.0 782 0.7904 0.8478
0.083 68.96 793 0.8550 0.8043
0.0385 70.0 805 0.8915 0.8261
0.0714 70.96 816 0.8631 0.8261
0.0444 72.0 828 0.8231 0.8478
0.0496 72.96 839 0.8199 0.8478
0.0887 74.0 851 0.8304 0.8478
0.0475 74.96 862 0.8529 0.8261
0.0639 76.0 874 0.8580 0.8261
0.0704 76.52 880 0.8589 0.8261

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0