whisper-small-gl / README.md
Atsui75's picture
Update README.md
bf412f8
metadata
language:
  - gl
license: apache-2.0
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Small GL - Santiago Paramés-Estévez
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: gl
          split: test
          args: 'config: gl, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 15.233405065386526

Whisper Small GL - Santiago Paramés-Estévez

This model is a fine-tuned version of openai/whisper-small on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3179
  • Wer: 15.2334

Model description

This model was fine-tuned using Sanchit Gandhi's notebook: https://huggingface.co./blog/fine-tune-whisper

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0707 2.69 1000 0.2596 16.4915
0.0063 5.38 2000 0.2952 15.8583
0.0014 8.06 3000 0.3105 15.2624
0.0011 10.75 4000 0.3179 15.2334

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1
  • Tokenizers 0.13.2