Polish Distil-Whisper: distil-large-v3

Distil-Whisper was proposed in the paper Robust Knowledge Distillation via Large-Scale Pseudo Labelling.

It is a distilled version of the Whisper model that is 3 times faster, 49% smaller. This is the repository for distil-large-v3-pl, a distilled variant of Whisper large-v3.

Usage

Distil-Whisper is supported in Hugging Face 🤗 Transformers from version 4.35 onwards. To run the model, first install the latest version of the Transformers library. For this example, we'll also install 🤗 Datasets to load toy audio dataset from the Hugging Face Hub:

pip install --upgrade pip
pip install --upgrade transformers accelerate datasets[audio]

Short-Form Transcription

The model can be used with the pipeline class to transcribe short-form audio files (< 30-seconds) as follows:

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "Aspik101/distil-whisper-large-v3-pl"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
sample = dataset[0]["audio"]

result = pipe(sample)
print(result["text"])

To transcribe a local audio file, simply pass the path to your audio file when you call the pipeline:

- result = pipe(sample)
+ result = pipe("audio.mp3")

Long-Form Transcription

Distil-Whisper uses a chunked algorithm to transcribe long-form audio files (> 30-seconds). In practice, this chunked long-form algorithm is 9x faster than the sequential algorithm proposed by OpenAI in the Whisper paper (see Table 7 of the Distil-Whisper paper).

To enable chunking, pass the chunk_length_s parameter to the pipeline. For Distil-Whisper, a chunk length of 15-seconds is optimal. To activate batching, pass the argument batch_size:

import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
from datasets import load_dataset


device = "cuda:0" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32

model_id = "Aspik101/distil-whisper-large-v3-pl"

model = AutoModelForSpeechSeq2Seq.from_pretrained(
    model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model.to(device)

processor = AutoProcessor.from_pretrained(model_id)

pipe = pipeline(
    "automatic-speech-recognition",
    model=model,
    tokenizer=processor.tokenizer,
    feature_extractor=processor.feature_extractor,
    max_new_tokens=128,
    chunk_length_s=15,
    batch_size=16,
    torch_dtype=torch_dtype,
    device=device,
)

dataset = load_dataset("mozilla-foundation/common_voice_13_0", "pl", split="test")
sample = dataset[0]["audio"]

result = pipe(sample)
print(result["text"])
Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Aspik101/distil-whisper-large-v3-pl

Finetunes
1 model

Collection including Aspik101/distil-whisper-large-v3-pl