To run:

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16
)

config = {
    'base_model_name_or_path': 'deepseek-ai/deepseek-math-7b-base'
}


PEFT_MODEL = "trained-model3"

config = PeftConfig.from_pretrained(PEFT_MODEL)
model = AutoModelForCausalLM.from_pretrained(
    config.base_model_name_or_path,
    return_dict=True,
    quantization_config=bnb_config,
    device_map="sequential",
    trust_remote_code=True
)

tokenizer=AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token

model = PeftModel.from_pretrained(model, PEFT_MODEL)


generation_config = model.generation_config
generation_config.max_new_tokens = 2048
generation_config.temperature = 0.7
generation_config.top_p = 0.7
generation_config.do_sample = True
generation_config.num_return_sequences = 1
generation_config.pad_token_id = tokenizer.eos_token_id
generation_config.eos_token_id = tokenizer.eos_token_id

prompt = f"""Problem Statement: {ques}"""
encoding = tokenizer(prompt, return_tensors="pt").to(device)
with torch.inference_mode():
    outputs = model.generate(
      input_ids = encoding.input_ids,
      attention_mask = encoding.attention_mask,
      generation_config = generation_config
  )

print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.