bart_samsum / README.md
Arjun9's picture
Update README.md
029adf2 verified
|
raw
history blame
2.26 kB
metadata
license: mit
base_model: facebook/bart-large-xsum
tags:
  - generated_from_trainer
metrics:
  - rouge
  - bleu
model-index:
  - name: bart_samsum
    results: []
datasets:
  - samsum
pipeline_tag: summarization

bart_samsum

This model is a fine-tuned version of facebook/bart-large-xsum on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4947
  • Rouge1: 53.3294
  • Rouge2: 28.6009
  • Rougel: 44.2008
  • Rougelsum: 49.2031
  • Bleu: 0.0
  • Meteor: 0.4887
  • Gen Len: 30.1209

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu Meteor Gen Len
1.3838 0.9997 1841 1.5631 52.3252 27.2646 42.5893 48.2397 0.0 0.4825 32.0415
1.0835 2.0 3683 1.4947 53.3294 28.6009 44.2008 49.2031 0.0 0.4887 30.1209
0.8345 2.9997 5524 1.5956 52.1812 27.1239 42.9864 47.6384 0.0 0.4774 30.5446
0.672 4.0 7366 1.6695 52.8148 27.4815 43.3732 48.4633 0.0 0.4836 31.0342
0.538 4.9986 9205 1.8055 52.0988 26.762 42.5505 47.3721 0.0 0.4738 29.8901

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1