|
--- |
|
license: apache-2.0 |
|
base_model: ntu-spml/distilhubert |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- marsyas/gtzan |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: distilhubert-finetuned-gtzan |
|
results: |
|
- task: |
|
name: Audio Classification |
|
type: audio-classification |
|
dataset: |
|
name: GTZAN |
|
type: marsyas/gtzan |
|
config: all |
|
split: train |
|
args: all |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.87 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# distilhubert-finetuned-gtzan |
|
|
|
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co./ntu-spml/distilhubert) on the GTZAN dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6333 |
|
- Accuracy: 0.87 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 2.2417 | 1.0 | 57 | 2.1896 | 0.42 | |
|
| 1.8003 | 2.0 | 114 | 1.6369 | 0.52 | |
|
| 1.3938 | 3.0 | 171 | 1.2560 | 0.72 | |
|
| 1.2724 | 4.0 | 228 | 1.1942 | 0.68 | |
|
| 0.9682 | 5.0 | 285 | 0.8864 | 0.8 | |
|
| 0.7111 | 6.0 | 342 | 0.7542 | 0.82 | |
|
| 0.6339 | 7.0 | 399 | 0.7712 | 0.81 | |
|
| 0.4599 | 8.0 | 456 | 0.6080 | 0.84 | |
|
| 0.3261 | 9.0 | 513 | 0.5998 | 0.84 | |
|
| 0.2991 | 10.0 | 570 | 0.6767 | 0.79 | |
|
| 0.1615 | 11.0 | 627 | 0.5817 | 0.87 | |
|
| 0.0854 | 12.0 | 684 | 0.5859 | 0.83 | |
|
| 0.0752 | 13.0 | 741 | 0.5681 | 0.85 | |
|
| 0.0341 | 14.0 | 798 | 0.5916 | 0.88 | |
|
| 0.0331 | 15.0 | 855 | 0.6028 | 0.87 | |
|
| 0.02 | 16.0 | 912 | 0.6283 | 0.85 | |
|
| 0.0175 | 17.0 | 969 | 0.6103 | 0.88 | |
|
| 0.0151 | 18.0 | 1026 | 0.6244 | 0.88 | |
|
| 0.014 | 19.0 | 1083 | 0.6293 | 0.86 | |
|
| 0.0181 | 20.0 | 1140 | 0.6333 | 0.87 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.31.0.dev0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.13.1 |
|
- Tokenizers 0.13.3 |
|
|