|
--- |
|
datasets: |
|
- AnyaSchen/image2poetry_ru |
|
language: |
|
- ru |
|
tags: |
|
- Esenin |
|
- image2poetry |
|
--- |
|
|
|
This repo contains model for generation poetry in style of Esenin from image. |
|
The model is fune-tuned concatecation of two pre-trained models: [google/vit-base-patch16-224](https://huggingface.co./google/vit-base-patch16-224) as encoder and [AnyaSchen/rugpt3_esenin](https://huggingface.co./AnyaSchen/rugpt3_esenin) as decoder. |
|
|
|
To use this model you can do: |
|
|
|
``` |
|
from PIL import Image |
|
import requests |
|
from transformers import AutoTokenizer, VisionEncoderDecoderModel, ViTImageProcessor |
|
|
|
def generate_poetry(fine_tuned_model, image, tokenizer): |
|
pixel_values = feature_extractor(images=image, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
# Generate the poetry with the fine-tuned VisionEncoderDecoder model |
|
generated_tokens = fine_tuned_model.generate( |
|
pixel_values, |
|
max_length=300, |
|
num_beams=3, |
|
top_p=0.8, |
|
temperature=2.0, |
|
do_sample=True, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
) |
|
|
|
# Decode the generated tokens |
|
generated_poetry = tokenizer.decode(generated_tokens[0], skip_special_tokens=True) |
|
return generated_poetry |
|
|
|
path = 'AnyaSchen/vit-rugpt3-medium-esenin' |
|
fine_tuned_model = VisionEncoderDecoderModel.from_pretrained(path).to(device) |
|
feature_extractor = ViTImageProcessor.from_pretrained(path) |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
|
|
url = 'https://anandaindia.org/wp-content/uploads/2018/12/happy-man.jpg' |
|
image = Image.open(requests.get(url, stream=True).raw) |
|
|
|
generated_poetry = generate_poetry(fine_tuned_model, image, tokenizer) |
|
print(generated_poetry) |
|
``` |