|
--- |
|
language: |
|
- ru |
|
tags: |
|
- keywords2poetry |
|
- Pushkin |
|
- Mayakovsky |
|
- Esenin |
|
- Blok |
|
- Tyutchev |
|
--- |
|
This repo contains the fune-tuned version of [ai-forever/rugpt3medium_based_on_gpt2](https://huggingface.co./ai-forever/rugpt3medium_based_on_gpt2), which can generate poetry from keywords in style of Pushkin, Mayakovsky, Esenin, Blok and Tyutchev. |
|
|
|
To use this model, you can do this: |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
def generate_poetry(input: str, model, num_beams=3): |
|
input = input if len(input) > 0 else tokenizer.bos_token |
|
input_ids = tokenizer.encode(input, return_tensors="pt").to(device) |
|
# Create an attention mask |
|
attention_mask = (input_ids != tokenizer.pad_token_id).float() |
|
|
|
# Set the pad_token_id |
|
tokenizer.pad_token_id = tokenizer.eos_token_id |
|
with torch.no_grad(): |
|
out = model.generate(input_ids, |
|
do_sample=True, |
|
num_beams=num_beams, |
|
temperature=2.0, |
|
top_p=0.9, |
|
max_length = 200, |
|
eos_token_id=tokenizer.eos_token_id, |
|
bos_token_id=tokenizer.bos_token_id, |
|
attention_mask=attention_mask |
|
).to(device) |
|
return tokenizer.batch_decode(out, skip_special_tokens=True)[0] |
|
|
|
path = 'AnyaSchen/rugpt3-medium-keywords2poetry' |
|
tokenizer = AutoTokenizer.from_pretrained(path) |
|
model = AutoModelForCausalLM.from_pretrained(path).to(device) |
|
|
|
inp = 'Автор: Маяковский\nКлючевые слова:<write your keywords>' |
|
print(generate_poetry(inp, model)) |
|
``` |