AntoineD's picture
End of training
75abd08
metadata
base_model: camembert/camembert-base-ccnet
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: camembert_ccnet_classification_tools_qlora-8bit_fr
    results: []

camembert_ccnet_classification_tools_qlora-8bit_fr

This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5066
  • Accuracy: 0.85
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Rate
2.0629 1.0 7 2.0715 0.125 0.0001
2.0638 2.0 14 2.0676 0.15 0.0001
2.0614 3.0 21 2.0661 0.1 0.0001
2.0676 4.0 28 2.0622 0.125 0.0001
2.0502 5.0 35 2.0530 0.15 0.0001
2.0409 6.0 42 2.0480 0.175 9e-05
2.0457 7.0 49 2.0431 0.1 0.0001
2.0401 8.0 56 2.0398 0.125 0.0001
2.0239 9.0 63 2.0283 0.275 0.0001
2.0257 10.0 70 2.0131 0.3 0.0001
1.999 11.0 77 1.9926 0.425 0.0001
2.0053 12.0 84 1.9866 0.4 8e-05
1.9893 13.0 91 1.9710 0.475 0.0001
1.9762 14.0 98 1.9572 0.475 0.0001
1.9726 15.0 105 1.9398 0.425 0.0001
1.9456 16.0 112 1.9152 0.5 0.0001
1.9425 17.0 119 1.8971 0.575 0.0001
1.9078 18.0 126 1.8788 0.625 7e-05
1.901 19.0 133 1.8608 0.65 0.0001
1.8865 20.0 140 1.8407 0.625 0.0001
1.8696 21.0 147 1.8234 0.675 0.0001
1.8618 22.0 154 1.7964 0.725 0.0001
1.8238 23.0 161 1.7778 0.725 0.0001
1.8164 24.0 168 1.7739 0.675 6e-05
1.823 25.0 175 1.7442 0.675 0.0001
1.7892 26.0 182 1.7265 0.7 0.0001
1.7865 27.0 189 1.7110 0.75 0.0001
1.7643 28.0 196 1.7114 0.725 0.0001
1.7613 29.0 203 1.6859 0.775 0.0001
1.7681 30.0 210 1.6686 0.775 5e-05
1.7251 31.0 217 1.6547 0.8 0.0000
1.7215 32.0 224 1.6431 0.8 0.0000
1.7304 33.0 231 1.6285 0.75 0.0000
1.7182 34.0 238 1.6164 0.8 0.0000
1.7099 35.0 245 1.6066 0.825 0.0000
1.6902 36.0 252 1.6060 0.8 4e-05
1.6839 37.0 259 1.5949 0.875 0.0000
1.6627 38.0 266 1.5822 0.875 0.0000
1.6558 39.0 273 1.5723 0.875 0.0000
1.6667 40.0 280 1.5639 0.85 0.0000
1.6663 41.0 287 1.5576 0.85 0.0000
1.642 42.0 294 1.5506 0.825 3e-05
1.6479 43.0 301 1.5471 0.825 0.0000
1.6425 44.0 308 1.5414 0.825 0.0000
1.6214 45.0 315 1.5351 0.85 0.0000
1.6331 46.0 322 1.5310 0.875 0.0000
1.6406 47.0 329 1.5281 0.875 0.0000
1.6332 48.0 336 1.5265 0.875 2e-05
1.6474 49.0 343 1.5218 0.875 0.0000
1.6122 50.0 350 1.5184 0.875 0.0000
1.6166 51.0 357 1.5162 0.875 0.0000
1.6245 52.0 364 1.5343 0.875 0.0000
1.6027 53.0 371 1.5272 0.85 0.0000
1.6305 54.0 378 1.5261 0.85 1e-05
1.6172 55.0 385 1.5173 0.85 0.0000
1.6109 56.0 392 1.5168 0.875 0.0000
1.6037 57.0 399 1.5154 0.875 5e-06
1.6031 58.0 406 1.4970 0.875 0.0000
1.617 59.0 413 1.4961 0.875 0.0000
1.5955 60.0 420 1.5066 0.85 0.0

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1