Edit model card

camembert_ccnet_classification_tools_NEFTune_fr_lr1e-3_V2

This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.0965
  • Accuracy: 0.1042
  • Learning Rate: 0.0008

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 24
  • eval_batch_size: 192
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 60

Training results

Training Loss Epoch Step Validation Loss Accuracy Rate
2.1119 1.0 15 2.1246 0.1042 0.0010
2.0909 2.0 30 2.1521 0.0938 0.0010
2.1043 3.0 45 2.0959 0.0938 0.0009
2.0866 4.0 60 2.1143 0.0938 0.0009
2.0746 5.0 75 2.1063 0.1354 0.0009
2.0753 6.0 90 2.1266 0.0938 0.0009
2.0793 7.0 105 2.1177 0.1146 0.0009
2.0844 8.0 120 2.0959 0.1354 0.0009
2.0855 9.0 135 2.1072 0.0938 0.0008
2.0805 10.0 150 2.1128 0.0938 0.0008
2.079 11.0 165 2.1027 0.1354 0.0008
2.0855 12.0 180 2.1164 0.0938 0.0008
2.0745 13.0 195 2.0965 0.1042 0.0008

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.14.1
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AntoineD/camembert_ccnet_classification_tools_NEFTune_fr_lr1e-3_V2

Finetuned
(13)
this model