File size: 2,489 Bytes
5329d44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
base_model: camembert/camembert-base-ccnet
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: camembert_ccnet_classification_tools_NEFTune_fr_V2
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembert_ccnet_classification_tools_NEFTune_fr_V2

This model is a fine-tuned version of [camembert/camembert-base-ccnet](https://huggingface.co./camembert/camembert-base-ccnet) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5108
- Accuracy: 0.9062
- Learning Rate: 0.0001

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate   |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 1.802         | 1.0   | 15   | 1.3063          | 0.7708   | 0.0001 |
| 0.9616        | 2.0   | 30   | 0.7143          | 0.8438   | 0.0001 |
| 0.4359        | 3.0   | 45   | 0.3769          | 0.9271   | 0.0001 |
| 0.2292        | 4.0   | 60   | 0.3546          | 0.9167   | 0.0001 |
| 0.1448        | 5.0   | 75   | 0.2678          | 0.9479   | 0.0001 |
| 0.095         | 6.0   | 90   | 0.4425          | 0.9062   | 9e-05  |
| 0.0762        | 7.0   | 105  | 0.3686          | 0.9062   | 0.0001 |
| 0.0817        | 8.0   | 120  | 0.4784          | 0.9062   | 0.0001 |
| 0.0506        | 9.0   | 135  | 0.4753          | 0.8958   | 0.0001 |
| 0.0245        | 10.0  | 150  | 0.3736          | 0.9167   | 0.0001 |
| 0.0347        | 11.0  | 165  | 0.5036          | 0.9062   | 0.0001 |
| 0.0141        | 12.0  | 180  | 0.4478          | 0.9167   | 8e-05  |
| 0.0196        | 13.0  | 195  | 0.4295          | 0.9167   | 0.0001 |
| 0.009         | 14.0  | 210  | 0.3942          | 0.9167   | 0.0001 |
| 0.0076        | 15.0  | 225  | 0.5108          | 0.9062   | 0.0001 |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1