camembert_ccnet_classification_tools_NEFTune_fr_V2
This model is a fine-tuned version of camembert/camembert-base-ccnet on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5108
- Accuracy: 0.9062
- Learning Rate: 0.0001
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Rate |
---|---|---|---|---|---|
1.802 | 1.0 | 15 | 1.3063 | 0.7708 | 0.0001 |
0.9616 | 2.0 | 30 | 0.7143 | 0.8438 | 0.0001 |
0.4359 | 3.0 | 45 | 0.3769 | 0.9271 | 0.0001 |
0.2292 | 4.0 | 60 | 0.3546 | 0.9167 | 0.0001 |
0.1448 | 5.0 | 75 | 0.2678 | 0.9479 | 0.0001 |
0.095 | 6.0 | 90 | 0.4425 | 0.9062 | 9e-05 |
0.0762 | 7.0 | 105 | 0.3686 | 0.9062 | 0.0001 |
0.0817 | 8.0 | 120 | 0.4784 | 0.9062 | 0.0001 |
0.0506 | 9.0 | 135 | 0.4753 | 0.8958 | 0.0001 |
0.0245 | 10.0 | 150 | 0.3736 | 0.9167 | 0.0001 |
0.0347 | 11.0 | 165 | 0.5036 | 0.9062 | 0.0001 |
0.0141 | 12.0 | 180 | 0.4478 | 0.9167 | 8e-05 |
0.0196 | 13.0 | 195 | 0.4295 | 0.9167 | 0.0001 |
0.009 | 14.0 | 210 | 0.3942 | 0.9167 | 0.0001 |
0.0076 | 15.0 | 225 | 0.5108 | 0.9062 | 0.0001 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1
- Downloads last month
- 6
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for AntoineD/camembert_ccnet_classification_tools_NEFTune_fr_V2
Base model
almanach/camembert-base-ccnet