metadata
language:
- en
license: apache-2.0
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- dataset_size:1K<n<10K
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
widget:
- source_sentence: What types of industries does TTI service?
sentences:
- What types of businesses does HPE serve?
- How much did the company's revenues decrease in 2023 compared to 2022?
- >-
By what percentage did the quarterly cash dividend increase on January
26, 2023?
- source_sentence: What does ITEM 8 in Form 10-K refer to?
sentences:
- >-
ITEM 8 in Form 10-K refers to the Financial Statements and Supplementary
Data.
- UnitedHealth Group reported net earnings of $23,144 million in 2023.
- >-
What factors contributed to the decrease in automotive leasing revenue
in 2023?
- source_sentence: What are consolidated financial statements?
sentences:
- >-
The report on the Consolidated Financial Statements is dated February
16, 2024.
- How much did the foreclosed properties decrease in value during 2023?
- What was Chipotle Mexican Grill's net income in 2023?
- source_sentence: What were the total product sales in 2023?
sentences:
- Total product sales in 2023 amounted to $27,305 million.
- How does AutoZone manage its foreign operations in terms of currency?
- >-
What restrictions does the Bank Holding Company Act impose on JPMorgan
Chase?
- source_sentence: What is the global presence of Lubrizol?
sentences:
- >-
How does The Coca-Cola Company distribute its beverage products
globally?
- What are the two operating segments of NVIDIA as mentioned in the text?
- >-
How much did Delta Air Lines spend on debt and finance lease obligations
in 2023?
pipeline_tag: sentence-similarity
model-index:
- name: BGE base Financial Matryoshka
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.6957142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8342857142857143
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8628571428571429
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9085714285714286
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6957142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2780952380952381
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17257142857142854
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09085714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6957142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8342857142857143
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8628571428571429
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9085714285714286
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8045138729797765
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7709591836734694
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7746687336147619
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.7
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8271428571428572
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8642857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9157142857142857
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2757142857142857
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17285714285714285
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09157142857142857
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8271428571428572
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8642857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9157142857142857
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.807258910509631
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7726218820861678
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7757170101327764
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6928571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.82
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8585714285714285
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9028571428571428
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6928571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2733333333333334
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1717142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09028571428571427
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6928571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.82
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8585714285714285
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9028571428571428
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7979490809476271
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7643027210884353
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7684617620062486
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6857142857142857
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.81
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8542857142857143
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.89
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6857142857142857
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.27
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.17085714285714282
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.089
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6857142857142857
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.81
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8542857142857143
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.89
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7877753635329912
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7549472789115641
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7596045003108374
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6528571428571428
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7571428571428571
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8185714285714286
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.8685714285714285
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6528571428571428
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2523809523809524
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.1637142857142857
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.08685714285714284
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6528571428571428
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7571428571428571
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8185714285714286
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.8685714285714285
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7557078446701566
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7201400226757368
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7249497855774768
name: Cosine Map@100
BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Language: en
- License: apache-2.0
Model Sources
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("Andresckamilo/bge-base-financial-matryoshka")
sentences = [
'What is the global presence of Lubrizol?',
'How does The Coca-Cola Company distribute its beverage products globally?',
'What are the two operating segments of NVIDIA as mentioned in the text?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
Evaluation
Metrics
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6957 |
cosine_accuracy@3 |
0.8343 |
cosine_accuracy@5 |
0.8629 |
cosine_accuracy@10 |
0.9086 |
cosine_precision@1 |
0.6957 |
cosine_precision@3 |
0.2781 |
cosine_precision@5 |
0.1726 |
cosine_precision@10 |
0.0909 |
cosine_recall@1 |
0.6957 |
cosine_recall@3 |
0.8343 |
cosine_recall@5 |
0.8629 |
cosine_recall@10 |
0.9086 |
cosine_ndcg@10 |
0.8045 |
cosine_mrr@10 |
0.771 |
cosine_map@100 |
0.7747 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.7 |
cosine_accuracy@3 |
0.8271 |
cosine_accuracy@5 |
0.8643 |
cosine_accuracy@10 |
0.9157 |
cosine_precision@1 |
0.7 |
cosine_precision@3 |
0.2757 |
cosine_precision@5 |
0.1729 |
cosine_precision@10 |
0.0916 |
cosine_recall@1 |
0.7 |
cosine_recall@3 |
0.8271 |
cosine_recall@5 |
0.8643 |
cosine_recall@10 |
0.9157 |
cosine_ndcg@10 |
0.8073 |
cosine_mrr@10 |
0.7726 |
cosine_map@100 |
0.7757 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6929 |
cosine_accuracy@3 |
0.82 |
cosine_accuracy@5 |
0.8586 |
cosine_accuracy@10 |
0.9029 |
cosine_precision@1 |
0.6929 |
cosine_precision@3 |
0.2733 |
cosine_precision@5 |
0.1717 |
cosine_precision@10 |
0.0903 |
cosine_recall@1 |
0.6929 |
cosine_recall@3 |
0.82 |
cosine_recall@5 |
0.8586 |
cosine_recall@10 |
0.9029 |
cosine_ndcg@10 |
0.7979 |
cosine_mrr@10 |
0.7643 |
cosine_map@100 |
0.7685 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6857 |
cosine_accuracy@3 |
0.81 |
cosine_accuracy@5 |
0.8543 |
cosine_accuracy@10 |
0.89 |
cosine_precision@1 |
0.6857 |
cosine_precision@3 |
0.27 |
cosine_precision@5 |
0.1709 |
cosine_precision@10 |
0.089 |
cosine_recall@1 |
0.6857 |
cosine_recall@3 |
0.81 |
cosine_recall@5 |
0.8543 |
cosine_recall@10 |
0.89 |
cosine_ndcg@10 |
0.7878 |
cosine_mrr@10 |
0.7549 |
cosine_map@100 |
0.7596 |
Information Retrieval
Metric |
Value |
cosine_accuracy@1 |
0.6529 |
cosine_accuracy@3 |
0.7571 |
cosine_accuracy@5 |
0.8186 |
cosine_accuracy@10 |
0.8686 |
cosine_precision@1 |
0.6529 |
cosine_precision@3 |
0.2524 |
cosine_precision@5 |
0.1637 |
cosine_precision@10 |
0.0869 |
cosine_recall@1 |
0.6529 |
cosine_recall@3 |
0.7571 |
cosine_recall@5 |
0.8186 |
cosine_recall@10 |
0.8686 |
cosine_ndcg@10 |
0.7557 |
cosine_mrr@10 |
0.7201 |
cosine_map@100 |
0.7249 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 6,300 training samples
- Columns:
positive
and anchor
- Approximate statistics based on the first 1000 samples:
|
positive |
anchor |
type |
string |
string |
details |
- min: 6 tokens
- mean: 45.39 tokens
- max: 371 tokens
|
- min: 7 tokens
- mean: 20.23 tokens
- max: 45 tokens
|
- Samples:
positive |
anchor |
Chubb mitigates exposure to climate change risk by ceding catastrophe risk in our insurance portfolio through both reinsurance and capital markets, and our investment portfolio through the diversification of risk, industry, location, type and duration of security. |
How does Chubb respond to the risks associated with climate change? |
Item 8 of Part IV in the Annual Report on Form 10-K details the consolidated financial statements and accompanying notes. |
What documents are detailed in Item 8 of Part IV of the Annual Report on Form 10-K? |
While the outcome of this matter cannot be determined at this time, it is not currently expected to have a material adverse impact on our business. |
Is the outcome of the investigation into Tesla's waste segregation practices currently determinable? |
- Loss:
MatryoshkaLoss
with these parameters:{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epoch
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
gradient_accumulation_steps
: 16
learning_rate
: 2e-05
num_train_epochs
: 4
lr_scheduler_type
: cosine
warmup_ratio
: 0.1
bf16
: True
tf32
: True
load_best_model_at_end
: True
optim
: adamw_torch_fused
batch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: False
do_predict
: False
eval_strategy
: epoch
prediction_loss_only
: True
per_device_train_batch_size
: 32
per_device_eval_batch_size
: 16
per_gpu_train_batch_size
: None
per_gpu_eval_batch_size
: None
gradient_accumulation_steps
: 16
eval_accumulation_steps
: None
learning_rate
: 2e-05
weight_decay
: 0.0
adam_beta1
: 0.9
adam_beta2
: 0.999
adam_epsilon
: 1e-08
max_grad_norm
: 1.0
num_train_epochs
: 4
max_steps
: -1
lr_scheduler_type
: cosine
lr_scheduler_kwargs
: {}
warmup_ratio
: 0.1
warmup_steps
: 0
log_level
: passive
log_level_replica
: warning
log_on_each_node
: True
logging_nan_inf_filter
: True
save_safetensors
: True
save_on_each_node
: False
save_only_model
: False
restore_callback_states_from_checkpoint
: False
no_cuda
: False
use_cpu
: False
use_mps_device
: False
seed
: 42
data_seed
: None
jit_mode_eval
: False
use_ipex
: False
bf16
: True
fp16
: False
fp16_opt_level
: O1
half_precision_backend
: auto
bf16_full_eval
: False
fp16_full_eval
: False
tf32
: True
local_rank
: 0
ddp_backend
: None
tpu_num_cores
: None
tpu_metrics_debug
: False
debug
: []
dataloader_drop_last
: False
dataloader_num_workers
: 0
dataloader_prefetch_factor
: None
past_index
: -1
disable_tqdm
: False
remove_unused_columns
: True
label_names
: None
load_best_model_at_end
: True
ignore_data_skip
: False
fsdp
: []
fsdp_min_num_params
: 0
fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
fsdp_transformer_layer_cls_to_wrap
: None
accelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
deepspeed
: None
label_smoothing_factor
: 0.0
optim
: adamw_torch_fused
optim_args
: None
adafactor
: False
group_by_length
: False
length_column_name
: length
ddp_find_unused_parameters
: None
ddp_bucket_cap_mb
: None
ddp_broadcast_buffers
: False
dataloader_pin_memory
: True
dataloader_persistent_workers
: False
skip_memory_metrics
: True
use_legacy_prediction_loop
: False
push_to_hub
: False
resume_from_checkpoint
: None
hub_model_id
: None
hub_strategy
: every_save
hub_private_repo
: False
hub_always_push
: False
gradient_checkpointing
: False
gradient_checkpointing_kwargs
: None
include_inputs_for_metrics
: False
eval_do_concat_batches
: True
fp16_backend
: auto
push_to_hub_model_id
: None
push_to_hub_organization
: None
mp_parameters
:
auto_find_batch_size
: False
full_determinism
: False
torchdynamo
: None
ray_scope
: last
ddp_timeout
: 1800
torch_compile
: False
torch_compile_backend
: None
torch_compile_mode
: None
dispatch_batches
: None
split_batches
: None
include_tokens_per_second
: False
include_num_input_tokens_seen
: False
neftune_noise_alpha
: None
optim_target_modules
: None
batch_eval_metrics
: False
batch_sampler
: no_duplicates
multi_dataset_batch_sampler
: proportional
Training Logs
Epoch |
Step |
Training Loss |
dim_128_cosine_map@100 |
dim_256_cosine_map@100 |
dim_512_cosine_map@100 |
dim_64_cosine_map@100 |
dim_768_cosine_map@100 |
0.8122 |
10 |
1.521 |
- |
- |
- |
- |
- |
0.9746 |
12 |
- |
0.7434 |
0.7579 |
0.7641 |
0.6994 |
0.7678 |
1.6244 |
20 |
0.6597 |
- |
- |
- |
- |
- |
1.9492 |
24 |
- |
0.7583 |
0.7628 |
0.7726 |
0.7219 |
0.7735 |
2.4365 |
30 |
0.4472 |
- |
- |
- |
- |
- |
2.9239 |
36 |
- |
0.7578 |
0.7661 |
0.7747 |
0.7251 |
0.7753 |
3.2487 |
40 |
0.3865 |
- |
- |
- |
- |
- |
3.8985 |
48 |
- |
0.7596 |
0.7685 |
0.7757 |
0.7249 |
0.7747 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.14
- Sentence Transformers: 3.0.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.30.1
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}