File size: 2,877 Bytes
4865d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
---
base_model: toobiza/MT-smart-feather-100
tags:
- generated_from_trainer
model-index:
- name: MT-bumbling-jazz-110
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MT-bumbling-jazz-110

This model is a fine-tuned version of [toobiza/MT-smart-feather-100](https://huggingface.co./toobiza/MT-smart-feather-100) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3325
- Loss Ce: 0.0008
- Loss Bbox: 0.0411
- Cardinality Error: 1.0
- Giou: 93.8060

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Loss Ce | Loss Bbox | Cardinality Error | Giou    |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:-----------------:|:-------:|
| 3.0324        | 0.21  | 100  | 0.2384          | 0.0006  | 0.0280    | 1.0               | 95.1515 |
| 3.0821        | 0.43  | 200  | 0.2353          | 0.0005  | 0.0270    | 1.0               | 95.0779 |
| 3.1303        | 0.64  | 300  | 0.2509          | 0.0005  | 0.0297    | 1.0               | 94.9938 |
| 3.1438        | 0.85  | 400  | 0.2649          | 0.0004  | 0.0316    | 1.0               | 94.7667 |
| 3.0505        | 1.07  | 500  | 0.3075          | 0.0007  | 0.0368    | 1.0               | 93.9513 |
| 3.3453        | 1.28  | 600  | 0.3260          | 0.0007  | 0.0401    | 1.0               | 93.8608 |
| 2.9246        | 1.49  | 700  | 0.2985          | 0.0009  | 0.0357    | 1.0               | 94.1213 |
| 2.8508        | 1.71  | 800  | 0.2933          | 0.0008  | 0.0349    | 1.0               | 94.1778 |
| 2.9657        | 1.92  | 900  | 0.3315          | 0.0009  | 0.0410    | 1.0               | 93.8321 |
| 3.1487        | 2.13  | 1000 | 0.3340          | 0.0008  | 0.0411    | 1.0               | 93.7168 |
| 3.1254        | 2.35  | 1100 | 0.3098          | 0.0008  | 0.0379    | 1.0               | 94.1191 |
| 2.4966        | 2.56  | 1200 | 0.3171          | 0.0008  | 0.0384    | 1.0               | 93.8997 |
| 2.8596        | 2.77  | 1300 | 0.3294          | 0.0008  | 0.0404    | 1.0               | 93.7750 |
| 3.2516        | 2.99  | 1400 | 0.3325          | 0.0008  | 0.0411    | 1.0               | 93.8060 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3