MT-bumbling-jazz-110

This model is a fine-tuned version of toobiza/MT-smart-feather-100 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3325
  • Loss Ce: 0.0008
  • Loss Bbox: 0.0411
  • Cardinality Error: 1.0
  • Giou: 93.8060

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Loss Ce Loss Bbox Cardinality Error Giou
3.0324 0.21 100 0.2384 0.0006 0.0280 1.0 95.1515
3.0821 0.43 200 0.2353 0.0005 0.0270 1.0 95.0779
3.1303 0.64 300 0.2509 0.0005 0.0297 1.0 94.9938
3.1438 0.85 400 0.2649 0.0004 0.0316 1.0 94.7667
3.0505 1.07 500 0.3075 0.0007 0.0368 1.0 93.9513
3.3453 1.28 600 0.3260 0.0007 0.0401 1.0 93.8608
2.9246 1.49 700 0.2985 0.0009 0.0357 1.0 94.1213
2.8508 1.71 800 0.2933 0.0008 0.0349 1.0 94.1778
2.9657 1.92 900 0.3315 0.0009 0.0410 1.0 93.8321
3.1487 2.13 1000 0.3340 0.0008 0.0411 1.0 93.7168
3.1254 2.35 1100 0.3098 0.0008 0.0379 1.0 94.1191
2.4966 2.56 1200 0.3171 0.0008 0.0384 1.0 93.8997
2.8596 2.77 1300 0.3294 0.0008 0.0404 1.0 93.7750
3.2516 2.99 1400 0.3325 0.0008 0.0411 1.0 93.8060

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.14.6
  • Tokenizers 0.13.3
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AmineAllo/MT-bumbling-jazz-110

Finetuned
(4)
this model