|
--- |
|
license: apache-2.0 |
|
tags: |
|
- fine-tuned |
|
- qwen2.5c |
|
- instruct |
|
- causal-lm |
|
--- |
|
|
|
# Qwen2.5-7b-instruct-sft |
|
|
|
This is a fine-tuned version of the **Qwen2.5-7B-Instruct** model for **instruction-following tasks**. It was fine-tuned using the `SFTTrainer` from the `trl` library on the **OpenAssistant Guanaco** dataset. |
|
|
|
## Model Details |
|
|
|
### **Base Model** |
|
- **Model**: [Qwen2.5-7B-Instruct](https://huggingface.co./Qwen/Qwen2.5-7B-Instruct) |
|
- **Architecture**: Transformer-based causal language model |
|
- **License**: Apache 2.0 |
|
|
|
### **Fine-Tuning Details** |
|
- **Dataset**: OpenAssistant Guanaco |
|
- **Training Epochs**: 1 |
|
- **Batch Size**: 2 |
|
- **Gradient Accumulation Steps**: 16 |
|
- **Learning Rate**: 1e-5 |
|
- **Optimizer**: Paged AdamW 8-bit |
|
- **Mixed Precision**: `fp16` (if `bf16` is not supported) or `bf16` |
|
- **Max Sequence Length**: 512 tokens |
|
|
|
### **Training Hardware** |
|
- **GPU**: NVIDIA A100 (or your specific GPU) |
|
- **Training Time**: X hours (optional) |
|
|
|
## Usage |
|
|
|
You can use this model with the Hugging Face `transformers` library: |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
# Load the model and tokenizer |
|
model = AutoModelForCausalLM.from_pretrained("Ameer-linnk/qwen2.5-7b-instruct-sft") |
|
tokenizer = AutoTokenizer.from_pretrained("Ameer-linnk/qwen2.5-7b-instruct-sft") |
|
|
|
# Prepare input |
|
input_text = "What is the capital of France?" |
|
inputs = tokenizer(input_text, return_tensors="pt") |
|
|
|
# Generate output |
|
outputs = model.generate(**inputs) |
|
response = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
print(response) |
|
Example Output |
|
Input: |
|
What is the capital of France? |
|
|
|
Output: |
|
The capital of France is Paris. |
|
|