File size: 13,018 Bytes
4f868af 3c50625 8ab607f 4f868af 04b85dc 4f868af 22758a6 4f868af fcea003 4f868af f687ac3 4f868af f687ac3 105bec1 f687ac3 4f868af 3c50625 4f868af 3c50625 e2c1143 f687ac3 3c50625 e2c1143 3c50625 e2c1143 3c50625 4f868af e2c1143 3c50625 e2c1143 4f868af e2c1143 4f868af 3c50625 e2c1143 3c50625 e2c1143 4f868af 3c50625 4f868af 3c50625 f687ac3 4f868af 8ab607f 4f868af 105bec1 4f868af e0e6514 4f868af f687ac3 4f868af f687ac3 4f868af f687ac3 a6e9582 4f868af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
license: apache-2.0
language:
- en
base_model:
- answerdotai/ModernBERT-base
pipeline_tag: sentence-similarity
library_name: transformers
tags:
- sentence-transformers
- transformers.js
---
# gte-reranker-modernbert-base
We are excited to introduce the `gte-modernbert` series of models, which are built upon the latest modernBERT pre-trained encoder-only foundation models. The `gte-modernbert` series models include both text embedding models and rerank models.
The `gte-modernbert` models demonstrates competitive performance in several text embedding and text retrieval evaluation tasks when compared to similar-scale models from the current open-source community. This includes assessments such as **MTEB**, **LoCO**, and **COIR** evaluation.
## Model Overview
- Developed by: Tongyi Lab, Alibaba Group
- Model Type: Text reranker
- Primary Language: English
- Model Size: 149M
- Max Input Length: 8192 tokens
### Model list
| Models | Language | Model Type | Model Size | Max Seq. Length | Dimension | MTEB-en | BEIR | LoCo | CoIR |
|:--------------------------------------------------------------------------------------:|:--------:|:----------------------:|:----------:|:---------------:|:---------:|:-------:|:----:|:----:|:----:|
| [`gte-modernbert-base`](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | English | text embedding | 149M | 8192 | 768 | 64.38 | 55.33 | 87.57 | 79.31 |
| [`gte-reranker-modernbert-base`](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | English | text reranker | 149M | 8192 | - | - | 56.19 | 90.68 | 79.99 |
## Usage
> [!TIP]
> For `transformers` and `sentence-transformers`, if your GPU supports it, the efficient Flash Attention 2 will be used automatically if you have `flash_attn` installed. It is not mandatory.
>
> ```bash
> pip install flash_attn
> ```
Use with `transformers`
```python
# Requires transformers>=4.48.0
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name_or_path = "Alibaba-NLP/gte-reranker-modernbert-base"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path,
torch_dtype=torch.float16,
)
model.eval()
pairs = [
["what is the capital of China?", "Beijing"],
["how to implement quick sort in python?", "Introduction of quick sort"],
["how to implement quick sort in python?", "The weather is nice today"],
]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
# tensor([ 2.1387, 2.4609, -1.6729])
```
Use with `sentence-transformers`:
Before you start, install the sentence-transformers libraries:
```
pip install sentence-transformers
```
```python
# Requires transformers>=4.48.0
from sentence_transformers import CrossEncoder
model = CrossEncoder(
"Alibaba-NLP/gte-reranker-modernbert-base",
automodel_args={"torch_dtype": "auto"},
)
pairs = [
["what is the capital of China?", "Beijing"],
["how to implement quick sort in python?","Introduction of quick sort"],
["how to implement quick sort in python?", "The weather is nice today"],
]
scores = model.predict(pairs)
print(scores)
# [0.8945664 0.9213594 0.15742092]
# NOTE: Sentence Transformers calls Softmax over the outputs by default, hence the scores are in [0, 1] range.
```
Use with `transformers.js`
```js
import {
AutoTokenizer,
AutoModelForSequenceClassification,
} from "@huggingface/transformers";
const model_id = "Alibaba-NLP/gte-reranker-modernbert-base";
const model = await AutoModelForSequenceClassification.from_pretrained(
model_id,
{ dtype: "fp32" }, // Supported options: "fp32", "fp16", "q8", "q4", "q4f16"
);
const tokenizer = await AutoTokenizer.from_pretrained(model_id);
const pairs = [
["what is the capital of China?", "Beijing"],
["how to implement quick sort in python?", "Introduction of quick sort"],
["how to implement quick sort in python?", "The weather is nice today"],
];
const inputs = tokenizer(
pairs.map((x) => x[0]),
{
text_pair: pairs.map((x) => x[1]),
padding: true,
truncation: true,
},
);
const { logits } = await model(inputs);
console.log(logits.tolist()); // [[2.138258218765259], [2.4609625339508057], [-1.6775450706481934]]
```
## Training Details
The `gte-modernbert` series of models follows the training scheme of the previous [GTE models](https://huggingface.co./collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469), with the only difference being that the pre-training language model base has been replaced from [GTE-MLM](https://huggingface.co./Alibaba-NLP/gte-en-mlm-base) to [ModernBert](https://huggingface.co./answerdotai/ModernBERT-base). For more training details, please refer to our paper: [mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval](https://aclanthology.org/2024.emnlp-industry.103/)
## Evaluation
### MTEB
The results of other models are retrieved from [MTEB leaderboard](https://huggingface.co./spaces/mteb/leaderboard). Given that all models in the `gte-modernbert` series have a size of less than 1B parameters, we focused exclusively on the results of models under 1B from the MTEB leaderboard.
| Model Name | Param Size (M) | Dimension | Sequence Length | Average (56) | Class. (12) | Clust. (11) | Pair Class. (3) | Reran. (4) | Retr. (15) | STS (10) | Summ. (1) |
|:------------------------------------------------------------------------------------------------:|:--------------:|:---------:|:---------------:|:------------:|:-----------:|:---:|:---:|:---:|:---:|:-----------:|:--------:|
| [mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1) | 335 | 1024 | 512 | 64.68 | 75.64 | 46.71 | 87.2 | 60.11 | 54.39 | 85 | 32.71 |
| [multilingual-e5-large-instruct](https://huggingface.co./intfloat/multilingual-e5-large-instruct) | 560 | 1024 | 514 | 64.41 | 77.56 | 47.1 | 86.19 | 58.58 | 52.47 | 84.78 | 30.39 |
| [bge-large-en-v1.5](https://huggingface.co./BAAI/bge-large-en-v1.5) | 335 | 1024 | 512 | 64.23 | 75.97 | 46.08 | 87.12 | 60.03 | 54.29 | 83.11 | 31.61 |
| [gte-base-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-base-en-v1.5) | 137 | 768 | 8192 | 64.11 | 77.17 | 46.82 | 85.33 | 57.66 | 54.09 | 81.97 | 31.17 |
| [bge-base-en-v1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) | 109 | 768 | 512 | 63.55 | 75.53 | 45.77 | 86.55 | 58.86 | 53.25 | 82.4 | 31.07 |
| [gte-large-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5) | 409 | 1024 | 8192 | 65.39 | 77.75 | 47.95 | 84.63 | 58.50 | 57.91 | 81.43 | 30.91 |
| [modernbert-embed-base](https://huggingface.co./nomic-ai/modernbert-embed-base) | 149 | 768 | 8192 | 62.62 | 74.31 | 44.98 | 83.96 | 56.42 | 52.89 | 81.78 | 31.39 |
| [nomic-embed-text-v1.5](https://huggingface.co./nomic-ai/nomic-embed-text-v1.5) | | 768 | 8192 | 62.28 | 73.55 | 43.93 | 84.61 | 55.78 | 53.01| 81.94 | 30.4 |
| [gte-multilingual-base](https://huggingface.co./Alibaba-NLP/gte-multilingual-base) | 305 | 768 | 8192 | 61.4 | 70.89 | 44.31 | 84.24 | 57.47 |51.08 | 82.11 | 30.58 |
| [jina-embeddings-v3](https://huggingface.co./jinaai/jina-embeddings-v3) | 572 | 1024 | 8192 | 65.51 | 82.58 |45.21 |84.01 |58.13 |53.88 | 85.81 | 29.71 |
| [**gte-modernbert-base**](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 149 | 768 | 8192 | **64.38** | **76.99** | **46.47** | **85.93** | **59.24** | **55.33** | **81.57** | **30.68** |
### LoCo (Long Document Retrieval)
| Model Name | Dimension | Sequence Length | Average (5) | QsmsumRetrieval | SummScreenRetrieval | QasperAbastractRetrieval | QasperTitleRetrieval | GovReportRetrieval |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [gte-qwen1.5-7b](https://huggingface.co./Alibaba-NLP/gte-qwen1.5-7b) | 4096 | 32768 | 87.57 | 49.37 | 93.10 | 99.67 | 97.54 | 98.21 |
| [gte-large-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-v1.5) |1024 | 8192 | 86.71 | 44.55 | 92.61 | 99.82 | 97.81 | 98.74 |
| [gte-base-v1.5](https://huggingface.co./Alibaba-NLP/gte-base-v1.5) | 768 | 8192 | 87.44 | 49.91 | 91.78 | 99.82 | 97.13 | 98.58 |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 88.88 | 54.45 | 93.00 | 99.82 | 98.03 | 98.70 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 90.68 | 70.86 | 94.06 | 99.73 | 99.11 | 89.67 |
### COIR (Code Retrieval Task)
| Model Name | Dimension | Sequence Length | Average(20) | CodeSearchNet-ccr-go | CodeSearchNet-ccr-java | CodeSearchNet-ccr-javascript | CodeSearchNet-ccr-php | CodeSearchNet-ccr-python | CodeSearchNet-ccr-ruby | CodeSearchNet-go | CodeSearchNet-java | CodeSearchNet-javascript | CodeSearchNet-php | CodeSearchNet-python | CodeSearchNet-ruby | apps | codefeedback-mt | codefeedback-st | codetrans-contest | codetrans-dl | cosqa | stackoverflow-qa | synthetic-text2sql |
|:----:|:---:|:---:|:---:|:---:| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 79.31 | 94.15 | 93.57 | 94.27 | 91.51 | 93.93 | 90.63 | 88.32 | 83.27 | 76.05 | 85.12 | 88.16 | 77.59 | 57.54 | 82.34 | 85.95 | 71.89 | 35.46 | 43.47 | 91.2 | 61.87 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 79.99 | 96.43 | 96.88 | 98.32 | 91.81 | 97.7 | 91.96 | 88.81 | 79.71 | 76.27 | 89.39 | 98.37 | 84.11 | 47.57 | 83.37 | 88.91 | 49.66 | 36.36 | 44.37 | 89.58 | 64.21 |
### BEIR
| Model Name | Dimension | Sequence Length | Average(15) | ArguAna | ClimateFEVER | CQADupstackAndroidRetrieval | DBPedia | FEVER | FiQA2018 | HotpotQA | MSMARCO | NFCorpus | NQ | QuoraRetrieval | SCIDOCS | SciFact | Touche2020 | TRECCOVID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [gte-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-modernbert-base) | 768 | 8192 | 55.33 | 72.68 | 37.74 | 42.63 | 41.79 | 91.03 | 48.81 | 69.47 | 40.9 | 36.44 | 57.62 | 88.55 | 21.29 | 77.4 | 21.68 | 81.95 |
| [gte-reranker-modernbert-base](https://huggingface.co./Alibaba-NLP/gte-reranker-modernbert-base) | - | 8192 | 56.73 | 69.03 | 37.79 | 44.68 | 47.23 | 94.54 | 49.81 | 78.16 | 45.38 | 30.69 | 64.57 | 87.77 | 20.60 | 73.57 | 27.36 | 79.89 |
## Hiring
We have open positions for **Research Interns** and **Full-Time Researchers** to join our team at Tongyi Lab.
We are seeking passionate individuals with expertise in representation learning, LLM-driven information retrieval, Retrieval-Augmented Generation (RAG), and agent-based systems.
Our team is located in the vibrant cities of **Beijing** and **Hangzhou**.
If you are driven by curiosity and eager to make a meaningful impact through your work, we would love to hear from you. Please submit your resume along with a brief introduction to <a href="mailto:[email protected]">[email protected]</a>.
## Citation
If you find our paper or models helpful, feel free to give us a cite.
```
@inproceedings{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
pages={1393--1412},
year={2024}
}
@article{li2023towards,
title={Towards general text embeddings with multi-stage contrastive learning},
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan},
journal={arXiv preprint arXiv:2308.03281},
year={2023}
}
```
|