Update README.md
Browse files
README.md
CHANGED
@@ -34,49 +34,52 @@ The `gte-modernbert` models demonstrates competitive performance in several text
|
|
34 |
## Usage
|
35 |
|
36 |
Use with `Transformers`
|
37 |
-
|
38 |
```python
|
39 |
# Requires transformers>=4.36.0
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
]
|
50 |
-
|
51 |
-
model_path = 'Alibaba-NLP/gte-modernbert-base'
|
52 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
53 |
-
model = AutoModel.from_pretrained(model_path, trust_remote_code=True)
|
54 |
-
|
55 |
-
# Tokenize the input texts
|
56 |
-
batch_dict = tokenizer(input_texts, max_length=8192, padding=True, truncation=True, return_tensors='pt')
|
57 |
-
|
58 |
-
outputs = model(**batch_dict)
|
59 |
-
embeddings = outputs.last_hidden_state[:, 0]
|
60 |
-
|
61 |
-
# (Optionally) normalize embeddings
|
62 |
-
embeddings = F.normalize(embeddings, p=2, dim=1)
|
63 |
-
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
64 |
-
print(scores.tolist())
|
65 |
-
```
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
Use with `sentence-transformers`:
|
68 |
|
|
|
|
|
|
|
|
|
|
|
69 |
```python
|
70 |
# Requires sentence_transformers>=2.7.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
|
72 |
-
|
73 |
-
from sentence_transformers.util import cos_sim
|
74 |
|
75 |
-
|
76 |
|
77 |
-
|
78 |
-
embeddings = model.encode(sentences)
|
79 |
-
print(cos_sim(embeddings[0], embeddings[1]))
|
80 |
```
|
81 |
|
82 |
## Training Details
|
|
|
34 |
## Usage
|
35 |
|
36 |
Use with `Transformers`
|
|
|
37 |
```python
|
38 |
# Requires transformers>=4.36.0
|
39 |
+
import torch
|
40 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
41 |
|
42 |
+
model_name_or_path = 'Alibaba-NLP/gte-reranker-modernbert-base'
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
|
44 |
+
model = AutoModelForSequenceClassification.from_pretrained(
|
45 |
+
model_name_or_path, trust_remote_code=True,
|
46 |
+
torch_dtype=torch.float16
|
47 |
+
)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
pairs = [["what is the capital of China?", "Beijing"], ["how to implement quick sort in python?","Introduction of quick sort"], ["how to implement quick sort in python?", "The weather is nice today"]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
with torch.no_grad():
|
53 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
54 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
55 |
+
print(scores)
|
56 |
+
|
57 |
+
# tensor([1.2315, 0.5923, 0.3041])
|
58 |
+
```
|
59 |
Use with `sentence-transformers`:
|
60 |
|
61 |
+
Before you start, install the sentence-transformers libraries:
|
62 |
+
```
|
63 |
+
pip install sentence-transformers
|
64 |
+
```
|
65 |
+
|
66 |
```python
|
67 |
# Requires sentence_transformers>=2.7.0
|
68 |
+
from sentence_transformers import CrossEncoder
|
69 |
+
|
70 |
+
model_name_or_path = 'Alibaba-NLP/gte-reranker-modernbert-base'
|
71 |
+
|
72 |
+
model = CrossEncoder(
|
73 |
+
model_name_or_path,
|
74 |
+
automodel_args={"torch_dtype": "auto"},
|
75 |
+
trust_remote_code=True,
|
76 |
+
)
|
77 |
|
78 |
+
pairs = [["what is the capital of China?", "Beijing"], ["how to implement quick sort in python?","Introduction of quick sort"], ["how to implement quick sort in python?", "The weather is nice today"]]
|
|
|
79 |
|
80 |
+
scores = model.predict(sentence_pairs, convert_to_tensor=True).tolist()
|
81 |
|
82 |
+
print ("scores: ", scores)
|
|
|
|
|
83 |
```
|
84 |
|
85 |
## Training Details
|