|
--- |
|
tags: |
|
- mteb |
|
- sentence-transformers |
|
- transformers |
|
- Qwen2 |
|
- sentence-similarity |
|
license: apache-2.0 |
|
model-index: |
|
- name: gte-qwen2-7B-instruct |
|
results: |
|
- dataset: |
|
config: en |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
split: test |
|
type: mteb/amazon_counterfactual |
|
metrics: |
|
- type: accuracy |
|
value: 83.98507462686567 |
|
- type: ap |
|
value: 50.93015252587014 |
|
- type: f1 |
|
value: 78.50416599051215 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB AmazonPolarityClassification |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
split: test |
|
type: mteb/amazon_polarity |
|
metrics: |
|
- type: accuracy |
|
value: 96.61065 |
|
- type: ap |
|
value: 94.89174052954196 |
|
- type: f1 |
|
value: 96.60942596940565 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB AmazonReviewsClassification (en) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 55.614000000000004 |
|
- type: f1 |
|
value: 54.90553480294904 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB ArguAna |
|
revision: c22ab2a51041ffd869aaddef7af8d8215647e41a |
|
split: test |
|
type: mteb/arguana |
|
metrics: |
|
- type: map_at_1 |
|
value: 45.164 |
|
- type: map_at_10 |
|
value: 61.519 |
|
- type: map_at_100 |
|
value: 61.769 |
|
- type: map_at_1000 |
|
value: 61.769 |
|
- type: map_at_3 |
|
value: 57.443999999999996 |
|
- type: map_at_5 |
|
value: 60.058 |
|
- type: mrr_at_1 |
|
value: 46.088 |
|
- type: mrr_at_10 |
|
value: 61.861 |
|
- type: mrr_at_100 |
|
value: 62.117999999999995 |
|
- type: mrr_at_1000 |
|
value: 62.117999999999995 |
|
- type: mrr_at_3 |
|
value: 57.729 |
|
- type: mrr_at_5 |
|
value: 60.392 |
|
- type: ndcg_at_1 |
|
value: 45.164 |
|
- type: ndcg_at_10 |
|
value: 69.72 |
|
- type: ndcg_at_100 |
|
value: 70.719 |
|
- type: ndcg_at_1000 |
|
value: 70.719 |
|
- type: ndcg_at_3 |
|
value: 61.517999999999994 |
|
- type: ndcg_at_5 |
|
value: 66.247 |
|
- type: precision_at_1 |
|
value: 45.164 |
|
- type: precision_at_10 |
|
value: 9.545 |
|
- type: precision_at_100 |
|
value: 0.996 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 24.443 |
|
- type: precision_at_5 |
|
value: 16.97 |
|
- type: recall_at_1 |
|
value: 45.164 |
|
- type: recall_at_10 |
|
value: 95.448 |
|
- type: recall_at_100 |
|
value: 99.644 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 73.329 |
|
- type: recall_at_5 |
|
value: 84.851 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ArxivClusteringP2P |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
split: test |
|
type: mteb/arxiv-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 50.511868162026175 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB ArxivClusteringS2S |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
split: test |
|
type: mteb/arxiv-clustering-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 45.007803189284004 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB AskUbuntuDupQuestions |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
split: test |
|
type: mteb/askubuntudupquestions-reranking |
|
metrics: |
|
- type: map |
|
value: 64.55292107723382 |
|
- type: mrr |
|
value: 77.66158818097877 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB BIOSSES |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
split: test |
|
type: mteb/biosses-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.65459047085452 |
|
- type: cos_sim_spearman |
|
value: 82.10729255710761 |
|
- type: euclidean_pearson |
|
value: 82.78079159312476 |
|
- type: euclidean_spearman |
|
value: 80.50002701880933 |
|
- type: manhattan_pearson |
|
value: 82.41372641383016 |
|
- type: manhattan_spearman |
|
value: 80.57412509272639 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB Banking77Classification |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
split: test |
|
type: mteb/banking77 |
|
metrics: |
|
- type: accuracy |
|
value: 87.30844155844156 |
|
- type: f1 |
|
value: 87.25307322443255 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BiorxivClusteringP2P |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
split: test |
|
type: mteb/biorxiv-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 43.20754608934859 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB BiorxivClusteringS2S |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
split: test |
|
type: mteb/biorxiv-clustering-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 38.818037697335505 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackAndroidRetrieval |
|
revision: f46a197baaae43b4f621051089b82a364682dfeb |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 35.423 |
|
- type: map_at_10 |
|
value: 47.198 |
|
- type: map_at_100 |
|
value: 48.899 |
|
- type: map_at_1000 |
|
value: 49.004 |
|
- type: map_at_3 |
|
value: 43.114999999999995 |
|
- type: map_at_5 |
|
value: 45.491 |
|
- type: mrr_at_1 |
|
value: 42.918 |
|
- type: mrr_at_10 |
|
value: 53.299 |
|
- type: mrr_at_100 |
|
value: 54.032000000000004 |
|
- type: mrr_at_1000 |
|
value: 54.055 |
|
- type: mrr_at_3 |
|
value: 50.453 |
|
- type: mrr_at_5 |
|
value: 52.205999999999996 |
|
- type: ndcg_at_1 |
|
value: 42.918 |
|
- type: ndcg_at_10 |
|
value: 53.98 |
|
- type: ndcg_at_100 |
|
value: 59.57 |
|
- type: ndcg_at_1000 |
|
value: 60.879000000000005 |
|
- type: ndcg_at_3 |
|
value: 48.224000000000004 |
|
- type: ndcg_at_5 |
|
value: 50.998 |
|
- type: precision_at_1 |
|
value: 42.918 |
|
- type: precision_at_10 |
|
value: 10.299999999999999 |
|
- type: precision_at_100 |
|
value: 1.687 |
|
- type: precision_at_1000 |
|
value: 0.211 |
|
- type: precision_at_3 |
|
value: 22.842000000000002 |
|
- type: precision_at_5 |
|
value: 16.681 |
|
- type: recall_at_1 |
|
value: 35.423 |
|
- type: recall_at_10 |
|
value: 66.824 |
|
- type: recall_at_100 |
|
value: 89.564 |
|
- type: recall_at_1000 |
|
value: 97.501 |
|
- type: recall_at_3 |
|
value: 50.365 |
|
- type: recall_at_5 |
|
value: 57.921 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackEnglishRetrieval |
|
revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 33.205 |
|
- type: map_at_10 |
|
value: 44.859 |
|
- type: map_at_100 |
|
value: 46.135 |
|
- type: map_at_1000 |
|
value: 46.259 |
|
- type: map_at_3 |
|
value: 41.839 |
|
- type: map_at_5 |
|
value: 43.662 |
|
- type: mrr_at_1 |
|
value: 41.146 |
|
- type: mrr_at_10 |
|
value: 50.621 |
|
- type: mrr_at_100 |
|
value: 51.207 |
|
- type: mrr_at_1000 |
|
value: 51.246 |
|
- type: mrr_at_3 |
|
value: 48.535000000000004 |
|
- type: mrr_at_5 |
|
value: 49.818 |
|
- type: ndcg_at_1 |
|
value: 41.146 |
|
- type: ndcg_at_10 |
|
value: 50.683 |
|
- type: ndcg_at_100 |
|
value: 54.82 |
|
- type: ndcg_at_1000 |
|
value: 56.69 |
|
- type: ndcg_at_3 |
|
value: 46.611000000000004 |
|
- type: ndcg_at_5 |
|
value: 48.66 |
|
- type: precision_at_1 |
|
value: 41.146 |
|
- type: precision_at_10 |
|
value: 9.439 |
|
- type: precision_at_100 |
|
value: 1.465 |
|
- type: precision_at_1000 |
|
value: 0.194 |
|
- type: precision_at_3 |
|
value: 22.59 |
|
- type: precision_at_5 |
|
value: 15.86 |
|
- type: recall_at_1 |
|
value: 33.205 |
|
- type: recall_at_10 |
|
value: 61.028999999999996 |
|
- type: recall_at_100 |
|
value: 78.152 |
|
- type: recall_at_1000 |
|
value: 89.59700000000001 |
|
- type: recall_at_3 |
|
value: 49.05 |
|
- type: recall_at_5 |
|
value: 54.836 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackGamingRetrieval |
|
revision: 4885aa143210c98657558c04aaf3dc47cfb54340 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 41.637 |
|
- type: map_at_10 |
|
value: 55.162 |
|
- type: map_at_100 |
|
value: 56.142 |
|
- type: map_at_1000 |
|
value: 56.188 |
|
- type: map_at_3 |
|
value: 51.564 |
|
- type: map_at_5 |
|
value: 53.696 |
|
- type: mrr_at_1 |
|
value: 47.524 |
|
- type: mrr_at_10 |
|
value: 58.243 |
|
- type: mrr_at_100 |
|
value: 58.879999999999995 |
|
- type: mrr_at_1000 |
|
value: 58.9 |
|
- type: mrr_at_3 |
|
value: 55.69499999999999 |
|
- type: mrr_at_5 |
|
value: 57.284 |
|
- type: ndcg_at_1 |
|
value: 47.524 |
|
- type: ndcg_at_10 |
|
value: 61.305 |
|
- type: ndcg_at_100 |
|
value: 65.077 |
|
- type: ndcg_at_1000 |
|
value: 65.941 |
|
- type: ndcg_at_3 |
|
value: 55.422000000000004 |
|
- type: ndcg_at_5 |
|
value: 58.516 |
|
- type: precision_at_1 |
|
value: 47.524 |
|
- type: precision_at_10 |
|
value: 9.918000000000001 |
|
- type: precision_at_100 |
|
value: 1.276 |
|
- type: precision_at_1000 |
|
value: 0.13899999999999998 |
|
- type: precision_at_3 |
|
value: 24.765 |
|
- type: precision_at_5 |
|
value: 17.204 |
|
- type: recall_at_1 |
|
value: 41.637 |
|
- type: recall_at_10 |
|
value: 76.185 |
|
- type: recall_at_100 |
|
value: 92.149 |
|
- type: recall_at_1000 |
|
value: 98.199 |
|
- type: recall_at_3 |
|
value: 60.856 |
|
- type: recall_at_5 |
|
value: 68.25099999999999 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackGisRetrieval |
|
revision: 5003b3064772da1887988e05400cf3806fe491f2 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.27 |
|
- type: map_at_10 |
|
value: 37.463 |
|
- type: map_at_100 |
|
value: 38.434000000000005 |
|
- type: map_at_1000 |
|
value: 38.509 |
|
- type: map_at_3 |
|
value: 34.226 |
|
- type: map_at_5 |
|
value: 36.161 |
|
- type: mrr_at_1 |
|
value: 28.588 |
|
- type: mrr_at_10 |
|
value: 39.383 |
|
- type: mrr_at_100 |
|
value: 40.23 |
|
- type: mrr_at_1000 |
|
value: 40.281 |
|
- type: mrr_at_3 |
|
value: 36.422 |
|
- type: mrr_at_5 |
|
value: 38.252 |
|
- type: ndcg_at_1 |
|
value: 28.588 |
|
- type: ndcg_at_10 |
|
value: 43.511 |
|
- type: ndcg_at_100 |
|
value: 48.274 |
|
- type: ndcg_at_1000 |
|
value: 49.975 |
|
- type: ndcg_at_3 |
|
value: 37.319 |
|
- type: ndcg_at_5 |
|
value: 40.568 |
|
- type: precision_at_1 |
|
value: 28.588 |
|
- type: precision_at_10 |
|
value: 6.893000000000001 |
|
- type: precision_at_100 |
|
value: 0.9900000000000001 |
|
- type: precision_at_1000 |
|
value: 0.117 |
|
- type: precision_at_3 |
|
value: 16.347 |
|
- type: precision_at_5 |
|
value: 11.661000000000001 |
|
- type: recall_at_1 |
|
value: 26.27 |
|
- type: recall_at_10 |
|
value: 60.284000000000006 |
|
- type: recall_at_100 |
|
value: 81.902 |
|
- type: recall_at_1000 |
|
value: 94.43 |
|
- type: recall_at_3 |
|
value: 43.537 |
|
- type: recall_at_5 |
|
value: 51.475 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackMathematicaRetrieval |
|
revision: 90fceea13679c63fe563ded68f3b6f06e50061de |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.168 |
|
- type: map_at_10 |
|
value: 28.410000000000004 |
|
- type: map_at_100 |
|
value: 29.78 |
|
- type: map_at_1000 |
|
value: 29.892999999999997 |
|
- type: map_at_3 |
|
value: 25.238 |
|
- type: map_at_5 |
|
value: 26.96 |
|
- type: mrr_at_1 |
|
value: 23.507 |
|
- type: mrr_at_10 |
|
value: 33.382 |
|
- type: mrr_at_100 |
|
value: 34.404 |
|
- type: mrr_at_1000 |
|
value: 34.467999999999996 |
|
- type: mrr_at_3 |
|
value: 30.637999999999998 |
|
- type: mrr_at_5 |
|
value: 32.199 |
|
- type: ndcg_at_1 |
|
value: 23.507 |
|
- type: ndcg_at_10 |
|
value: 34.571000000000005 |
|
- type: ndcg_at_100 |
|
value: 40.663 |
|
- type: ndcg_at_1000 |
|
value: 43.236000000000004 |
|
- type: ndcg_at_3 |
|
value: 29.053 |
|
- type: ndcg_at_5 |
|
value: 31.563999999999997 |
|
- type: precision_at_1 |
|
value: 23.507 |
|
- type: precision_at_10 |
|
value: 6.654 |
|
- type: precision_at_100 |
|
value: 1.113 |
|
- type: precision_at_1000 |
|
value: 0.146 |
|
- type: precision_at_3 |
|
value: 14.427999999999999 |
|
- type: precision_at_5 |
|
value: 10.498000000000001 |
|
- type: recall_at_1 |
|
value: 18.168 |
|
- type: recall_at_10 |
|
value: 48.443000000000005 |
|
- type: recall_at_100 |
|
value: 74.47 |
|
- type: recall_at_1000 |
|
value: 92.494 |
|
- type: recall_at_3 |
|
value: 33.379999999999995 |
|
- type: recall_at_5 |
|
value: 39.76 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackPhysicsRetrieval |
|
revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.39 |
|
- type: map_at_10 |
|
value: 44.479 |
|
- type: map_at_100 |
|
value: 45.977000000000004 |
|
- type: map_at_1000 |
|
value: 46.087 |
|
- type: map_at_3 |
|
value: 40.976 |
|
- type: map_at_5 |
|
value: 43.038 |
|
- type: mrr_at_1 |
|
value: 40.135 |
|
- type: mrr_at_10 |
|
value: 50.160000000000004 |
|
- type: mrr_at_100 |
|
value: 51.052 |
|
- type: mrr_at_1000 |
|
value: 51.087 |
|
- type: mrr_at_3 |
|
value: 47.818 |
|
- type: mrr_at_5 |
|
value: 49.171 |
|
- type: ndcg_at_1 |
|
value: 40.135 |
|
- type: ndcg_at_10 |
|
value: 50.731 |
|
- type: ndcg_at_100 |
|
value: 56.452000000000005 |
|
- type: ndcg_at_1000 |
|
value: 58.123000000000005 |
|
- type: ndcg_at_3 |
|
value: 45.507 |
|
- type: ndcg_at_5 |
|
value: 48.11 |
|
- type: precision_at_1 |
|
value: 40.135 |
|
- type: precision_at_10 |
|
value: 9.192 |
|
- type: precision_at_100 |
|
value: 1.397 |
|
- type: precision_at_1000 |
|
value: 0.169 |
|
- type: precision_at_3 |
|
value: 21.816 |
|
- type: precision_at_5 |
|
value: 15.476 |
|
- type: recall_at_1 |
|
value: 32.39 |
|
- type: recall_at_10 |
|
value: 63.597 |
|
- type: recall_at_100 |
|
value: 86.737 |
|
- type: recall_at_1000 |
|
value: 97.039 |
|
- type: recall_at_3 |
|
value: 48.906 |
|
- type: recall_at_5 |
|
value: 55.659000000000006 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackProgrammersRetrieval |
|
revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.397 |
|
- type: map_at_10 |
|
value: 39.871 |
|
- type: map_at_100 |
|
value: 41.309000000000005 |
|
- type: map_at_1000 |
|
value: 41.409 |
|
- type: map_at_3 |
|
value: 36.047000000000004 |
|
- type: map_at_5 |
|
value: 38.104 |
|
- type: mrr_at_1 |
|
value: 34.703 |
|
- type: mrr_at_10 |
|
value: 44.773 |
|
- type: mrr_at_100 |
|
value: 45.64 |
|
- type: mrr_at_1000 |
|
value: 45.678999999999995 |
|
- type: mrr_at_3 |
|
value: 41.705 |
|
- type: mrr_at_5 |
|
value: 43.406 |
|
- type: ndcg_at_1 |
|
value: 34.703 |
|
- type: ndcg_at_10 |
|
value: 46.271 |
|
- type: ndcg_at_100 |
|
value: 52.037 |
|
- type: ndcg_at_1000 |
|
value: 53.81700000000001 |
|
- type: ndcg_at_3 |
|
value: 39.966 |
|
- type: ndcg_at_5 |
|
value: 42.801 |
|
- type: precision_at_1 |
|
value: 34.703 |
|
- type: precision_at_10 |
|
value: 8.744 |
|
- type: precision_at_100 |
|
value: 1.348 |
|
- type: precision_at_1000 |
|
value: 0.167 |
|
- type: precision_at_3 |
|
value: 19.102 |
|
- type: precision_at_5 |
|
value: 13.836 |
|
- type: recall_at_1 |
|
value: 28.397 |
|
- type: recall_at_10 |
|
value: 60.299 |
|
- type: recall_at_100 |
|
value: 84.595 |
|
- type: recall_at_1000 |
|
value: 96.155 |
|
- type: recall_at_3 |
|
value: 43.065 |
|
- type: recall_at_5 |
|
value: 50.371 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackRetrieval |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.044333333333338 |
|
- type: map_at_10 |
|
value: 38.78691666666666 |
|
- type: map_at_100 |
|
value: 40.113 |
|
- type: map_at_1000 |
|
value: 40.22125 |
|
- type: map_at_3 |
|
value: 35.52966666666667 |
|
- type: map_at_5 |
|
value: 37.372749999999996 |
|
- type: mrr_at_1 |
|
value: 33.159083333333335 |
|
- type: mrr_at_10 |
|
value: 42.913583333333335 |
|
- type: mrr_at_100 |
|
value: 43.7845 |
|
- type: mrr_at_1000 |
|
value: 43.830333333333336 |
|
- type: mrr_at_3 |
|
value: 40.29816666666667 |
|
- type: mrr_at_5 |
|
value: 41.81366666666667 |
|
- type: ndcg_at_1 |
|
value: 33.159083333333335 |
|
- type: ndcg_at_10 |
|
value: 44.75750000000001 |
|
- type: ndcg_at_100 |
|
value: 50.13658333333334 |
|
- type: ndcg_at_1000 |
|
value: 52.037 |
|
- type: ndcg_at_3 |
|
value: 39.34258333333334 |
|
- type: ndcg_at_5 |
|
value: 41.93708333333333 |
|
- type: precision_at_1 |
|
value: 33.159083333333335 |
|
- type: precision_at_10 |
|
value: 7.952416666666667 |
|
- type: precision_at_100 |
|
value: 1.2571666666666668 |
|
- type: precision_at_1000 |
|
value: 0.16099999999999998 |
|
- type: precision_at_3 |
|
value: 18.303833333333337 |
|
- type: precision_at_5 |
|
value: 13.057083333333333 |
|
- type: recall_at_1 |
|
value: 28.044333333333338 |
|
- type: recall_at_10 |
|
value: 58.237249999999996 |
|
- type: recall_at_100 |
|
value: 81.35391666666666 |
|
- type: recall_at_1000 |
|
value: 94.21283333333334 |
|
- type: recall_at_3 |
|
value: 43.32341666666667 |
|
- type: recall_at_5 |
|
value: 49.94908333333333 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackStatsRetrieval |
|
revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.838 |
|
- type: map_at_10 |
|
value: 36.04 |
|
- type: map_at_100 |
|
value: 37.113 |
|
- type: map_at_1000 |
|
value: 37.204 |
|
- type: map_at_3 |
|
value: 33.585 |
|
- type: map_at_5 |
|
value: 34.845 |
|
- type: mrr_at_1 |
|
value: 30.982 |
|
- type: mrr_at_10 |
|
value: 39.105000000000004 |
|
- type: mrr_at_100 |
|
value: 39.98 |
|
- type: mrr_at_1000 |
|
value: 40.042 |
|
- type: mrr_at_3 |
|
value: 36.912 |
|
- type: mrr_at_5 |
|
value: 38.062000000000005 |
|
- type: ndcg_at_1 |
|
value: 30.982 |
|
- type: ndcg_at_10 |
|
value: 40.982 |
|
- type: ndcg_at_100 |
|
value: 46.092 |
|
- type: ndcg_at_1000 |
|
value: 48.25 |
|
- type: ndcg_at_3 |
|
value: 36.41 |
|
- type: ndcg_at_5 |
|
value: 38.379999999999995 |
|
- type: precision_at_1 |
|
value: 30.982 |
|
- type: precision_at_10 |
|
value: 6.534 |
|
- type: precision_at_100 |
|
value: 0.9820000000000001 |
|
- type: precision_at_1000 |
|
value: 0.124 |
|
- type: precision_at_3 |
|
value: 15.745999999999999 |
|
- type: precision_at_5 |
|
value: 10.828 |
|
- type: recall_at_1 |
|
value: 27.838 |
|
- type: recall_at_10 |
|
value: 52.971000000000004 |
|
- type: recall_at_100 |
|
value: 76.357 |
|
- type: recall_at_1000 |
|
value: 91.973 |
|
- type: recall_at_3 |
|
value: 40.157 |
|
- type: recall_at_5 |
|
value: 45.147999999999996 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackTexRetrieval |
|
revision: 46989137a86843e03a6195de44b09deda022eec7 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.059 |
|
- type: map_at_10 |
|
value: 27.454 |
|
- type: map_at_100 |
|
value: 28.736 |
|
- type: map_at_1000 |
|
value: 28.865000000000002 |
|
- type: map_at_3 |
|
value: 24.773999999999997 |
|
- type: map_at_5 |
|
value: 26.266000000000002 |
|
- type: mrr_at_1 |
|
value: 23.125 |
|
- type: mrr_at_10 |
|
value: 31.267 |
|
- type: mrr_at_100 |
|
value: 32.32 |
|
- type: mrr_at_1000 |
|
value: 32.394 |
|
- type: mrr_at_3 |
|
value: 28.894 |
|
- type: mrr_at_5 |
|
value: 30.281000000000002 |
|
- type: ndcg_at_1 |
|
value: 23.125 |
|
- type: ndcg_at_10 |
|
value: 32.588 |
|
- type: ndcg_at_100 |
|
value: 38.432 |
|
- type: ndcg_at_1000 |
|
value: 41.214 |
|
- type: ndcg_at_3 |
|
value: 27.938000000000002 |
|
- type: ndcg_at_5 |
|
value: 30.127 |
|
- type: precision_at_1 |
|
value: 23.125 |
|
- type: precision_at_10 |
|
value: 5.9639999999999995 |
|
- type: precision_at_100 |
|
value: 1.047 |
|
- type: precision_at_1000 |
|
value: 0.148 |
|
- type: precision_at_3 |
|
value: 13.294 |
|
- type: precision_at_5 |
|
value: 9.628 |
|
- type: recall_at_1 |
|
value: 19.059 |
|
- type: recall_at_10 |
|
value: 44.25 |
|
- type: recall_at_100 |
|
value: 69.948 |
|
- type: recall_at_1000 |
|
value: 89.35300000000001 |
|
- type: recall_at_3 |
|
value: 31.114000000000004 |
|
- type: recall_at_5 |
|
value: 36.846000000000004 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackUnixRetrieval |
|
revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 28.355999999999998 |
|
- type: map_at_10 |
|
value: 39.055 |
|
- type: map_at_100 |
|
value: 40.486 |
|
- type: map_at_1000 |
|
value: 40.571 |
|
- type: map_at_3 |
|
value: 35.69 |
|
- type: map_at_5 |
|
value: 37.605 |
|
- type: mrr_at_1 |
|
value: 33.302 |
|
- type: mrr_at_10 |
|
value: 42.986000000000004 |
|
- type: mrr_at_100 |
|
value: 43.957 |
|
- type: mrr_at_1000 |
|
value: 43.996 |
|
- type: mrr_at_3 |
|
value: 40.111999999999995 |
|
- type: mrr_at_5 |
|
value: 41.735 |
|
- type: ndcg_at_1 |
|
value: 33.302 |
|
- type: ndcg_at_10 |
|
value: 44.962999999999994 |
|
- type: ndcg_at_100 |
|
value: 50.917 |
|
- type: ndcg_at_1000 |
|
value: 52.622 |
|
- type: ndcg_at_3 |
|
value: 39.182 |
|
- type: ndcg_at_5 |
|
value: 41.939 |
|
- type: precision_at_1 |
|
value: 33.302 |
|
- type: precision_at_10 |
|
value: 7.779999999999999 |
|
- type: precision_at_100 |
|
value: 1.203 |
|
- type: precision_at_1000 |
|
value: 0.145 |
|
- type: precision_at_3 |
|
value: 18.035 |
|
- type: precision_at_5 |
|
value: 12.873000000000001 |
|
- type: recall_at_1 |
|
value: 28.355999999999998 |
|
- type: recall_at_10 |
|
value: 58.782000000000004 |
|
- type: recall_at_100 |
|
value: 84.02199999999999 |
|
- type: recall_at_1000 |
|
value: 95.511 |
|
- type: recall_at_3 |
|
value: 43.126999999999995 |
|
- type: recall_at_5 |
|
value: 50.14999999999999 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackWebmastersRetrieval |
|
revision: 160c094312a0e1facb97e55eeddb698c0abe3571 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.391 |
|
- type: map_at_10 |
|
value: 37.523 |
|
- type: map_at_100 |
|
value: 39.312000000000005 |
|
- type: map_at_1000 |
|
value: 39.54 |
|
- type: map_at_3 |
|
value: 34.231 |
|
- type: map_at_5 |
|
value: 36.062 |
|
- type: mrr_at_1 |
|
value: 32.016 |
|
- type: mrr_at_10 |
|
value: 41.747 |
|
- type: mrr_at_100 |
|
value: 42.812 |
|
- type: mrr_at_1000 |
|
value: 42.844 |
|
- type: mrr_at_3 |
|
value: 39.129999999999995 |
|
- type: mrr_at_5 |
|
value: 40.524 |
|
- type: ndcg_at_1 |
|
value: 32.016 |
|
- type: ndcg_at_10 |
|
value: 43.826 |
|
- type: ndcg_at_100 |
|
value: 50.373999999999995 |
|
- type: ndcg_at_1000 |
|
value: 52.318 |
|
- type: ndcg_at_3 |
|
value: 38.479 |
|
- type: ndcg_at_5 |
|
value: 40.944 |
|
- type: precision_at_1 |
|
value: 32.016 |
|
- type: precision_at_10 |
|
value: 8.280999999999999 |
|
- type: precision_at_100 |
|
value: 1.6760000000000002 |
|
- type: precision_at_1000 |
|
value: 0.25 |
|
- type: precision_at_3 |
|
value: 18.05 |
|
- type: precision_at_5 |
|
value: 13.083 |
|
- type: recall_at_1 |
|
value: 27.391 |
|
- type: recall_at_10 |
|
value: 56.928999999999995 |
|
- type: recall_at_100 |
|
value: 85.169 |
|
- type: recall_at_1000 |
|
value: 96.665 |
|
- type: recall_at_3 |
|
value: 42.264 |
|
- type: recall_at_5 |
|
value: 48.556 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CQADupstackWordpressRetrieval |
|
revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 |
|
split: test |
|
type: BeIR/cqadupstack |
|
metrics: |
|
- type: map_at_1 |
|
value: 18.398 |
|
- type: map_at_10 |
|
value: 27.929 |
|
- type: map_at_100 |
|
value: 29.032999999999998 |
|
- type: map_at_1000 |
|
value: 29.126 |
|
- type: map_at_3 |
|
value: 25.070999999999998 |
|
- type: map_at_5 |
|
value: 26.583000000000002 |
|
- type: mrr_at_1 |
|
value: 19.963 |
|
- type: mrr_at_10 |
|
value: 29.997 |
|
- type: mrr_at_100 |
|
value: 30.9 |
|
- type: mrr_at_1000 |
|
value: 30.972 |
|
- type: mrr_at_3 |
|
value: 27.264 |
|
- type: mrr_at_5 |
|
value: 28.826 |
|
- type: ndcg_at_1 |
|
value: 19.963 |
|
- type: ndcg_at_10 |
|
value: 33.678999999999995 |
|
- type: ndcg_at_100 |
|
value: 38.931 |
|
- type: ndcg_at_1000 |
|
value: 41.379 |
|
- type: ndcg_at_3 |
|
value: 28.000000000000004 |
|
- type: ndcg_at_5 |
|
value: 30.637999999999998 |
|
- type: precision_at_1 |
|
value: 19.963 |
|
- type: precision_at_10 |
|
value: 5.7299999999999995 |
|
- type: precision_at_100 |
|
value: 0.902 |
|
- type: precision_at_1000 |
|
value: 0.122 |
|
- type: precision_at_3 |
|
value: 12.631 |
|
- type: precision_at_5 |
|
value: 9.057 |
|
- type: recall_at_1 |
|
value: 18.398 |
|
- type: recall_at_10 |
|
value: 49.254 |
|
- type: recall_at_100 |
|
value: 73.182 |
|
- type: recall_at_1000 |
|
value: 91.637 |
|
- type: recall_at_3 |
|
value: 34.06 |
|
- type: recall_at_5 |
|
value: 40.416000000000004 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ClimateFEVER |
|
revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 |
|
split: test |
|
type: mteb/climate-fever |
|
metrics: |
|
- type: map_at_1 |
|
value: 19.681 |
|
- type: map_at_10 |
|
value: 32.741 |
|
- type: map_at_100 |
|
value: 34.811 |
|
- type: map_at_1000 |
|
value: 35.003 |
|
- type: map_at_3 |
|
value: 27.697 |
|
- type: map_at_5 |
|
value: 30.372 |
|
- type: mrr_at_1 |
|
value: 44.951 |
|
- type: mrr_at_10 |
|
value: 56.34400000000001 |
|
- type: mrr_at_100 |
|
value: 56.961 |
|
- type: mrr_at_1000 |
|
value: 56.987 |
|
- type: mrr_at_3 |
|
value: 53.681 |
|
- type: mrr_at_5 |
|
value: 55.407 |
|
- type: ndcg_at_1 |
|
value: 44.951 |
|
- type: ndcg_at_10 |
|
value: 42.905 |
|
- type: ndcg_at_100 |
|
value: 49.95 |
|
- type: ndcg_at_1000 |
|
value: 52.917 |
|
- type: ndcg_at_3 |
|
value: 36.815 |
|
- type: ndcg_at_5 |
|
value: 38.817 |
|
- type: precision_at_1 |
|
value: 44.951 |
|
- type: precision_at_10 |
|
value: 12.989999999999998 |
|
- type: precision_at_100 |
|
value: 2.068 |
|
- type: precision_at_1000 |
|
value: 0.263 |
|
- type: precision_at_3 |
|
value: 27.275 |
|
- type: precision_at_5 |
|
value: 20.365 |
|
- type: recall_at_1 |
|
value: 19.681 |
|
- type: recall_at_10 |
|
value: 48.272999999999996 |
|
- type: recall_at_100 |
|
value: 71.87400000000001 |
|
- type: recall_at_1000 |
|
value: 87.929 |
|
- type: recall_at_3 |
|
value: 32.653999999999996 |
|
- type: recall_at_5 |
|
value: 39.364 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB DBPedia |
|
revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 |
|
split: test |
|
type: mteb/dbpedia |
|
metrics: |
|
- type: map_at_1 |
|
value: 10.231 |
|
- type: map_at_10 |
|
value: 22.338 |
|
- type: map_at_100 |
|
value: 31.927 |
|
- type: map_at_1000 |
|
value: 33.87 |
|
- type: map_at_3 |
|
value: 15.559999999999999 |
|
- type: map_at_5 |
|
value: 18.239 |
|
- type: mrr_at_1 |
|
value: 75.0 |
|
- type: mrr_at_10 |
|
value: 81.303 |
|
- type: mrr_at_100 |
|
value: 81.523 |
|
- type: mrr_at_1000 |
|
value: 81.53 |
|
- type: mrr_at_3 |
|
value: 80.083 |
|
- type: mrr_at_5 |
|
value: 80.758 |
|
- type: ndcg_at_1 |
|
value: 64.625 |
|
- type: ndcg_at_10 |
|
value: 48.687000000000005 |
|
- type: ndcg_at_100 |
|
value: 52.791 |
|
- type: ndcg_at_1000 |
|
value: 60.041999999999994 |
|
- type: ndcg_at_3 |
|
value: 53.757999999999996 |
|
- type: ndcg_at_5 |
|
value: 50.76500000000001 |
|
- type: precision_at_1 |
|
value: 75.0 |
|
- type: precision_at_10 |
|
value: 38.3 |
|
- type: precision_at_100 |
|
value: 12.025 |
|
- type: precision_at_1000 |
|
value: 2.3970000000000002 |
|
- type: precision_at_3 |
|
value: 55.417 |
|
- type: precision_at_5 |
|
value: 47.5 |
|
- type: recall_at_1 |
|
value: 10.231 |
|
- type: recall_at_10 |
|
value: 27.697 |
|
- type: recall_at_100 |
|
value: 57.409 |
|
- type: recall_at_1000 |
|
value: 80.547 |
|
- type: recall_at_3 |
|
value: 16.668 |
|
- type: recall_at_5 |
|
value: 20.552 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB EmotionClassification |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
split: test |
|
type: mteb/emotion |
|
metrics: |
|
- type: accuracy |
|
value: 61.365 |
|
- type: f1 |
|
value: 56.7540827912991 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB FEVER |
|
revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 |
|
split: test |
|
type: mteb/fever |
|
metrics: |
|
- type: map_at_1 |
|
value: 83.479 |
|
- type: map_at_10 |
|
value: 88.898 |
|
- type: map_at_100 |
|
value: 89.11 |
|
- type: map_at_1000 |
|
value: 89.12400000000001 |
|
- type: map_at_3 |
|
value: 88.103 |
|
- type: map_at_5 |
|
value: 88.629 |
|
- type: mrr_at_1 |
|
value: 89.934 |
|
- type: mrr_at_10 |
|
value: 93.91000000000001 |
|
- type: mrr_at_100 |
|
value: 93.937 |
|
- type: mrr_at_1000 |
|
value: 93.938 |
|
- type: mrr_at_3 |
|
value: 93.62700000000001 |
|
- type: mrr_at_5 |
|
value: 93.84599999999999 |
|
- type: ndcg_at_1 |
|
value: 89.934 |
|
- type: ndcg_at_10 |
|
value: 91.574 |
|
- type: ndcg_at_100 |
|
value: 92.238 |
|
- type: ndcg_at_1000 |
|
value: 92.45 |
|
- type: ndcg_at_3 |
|
value: 90.586 |
|
- type: ndcg_at_5 |
|
value: 91.16300000000001 |
|
- type: precision_at_1 |
|
value: 89.934 |
|
- type: precision_at_10 |
|
value: 10.555 |
|
- type: precision_at_100 |
|
value: 1.1159999999999999 |
|
- type: precision_at_1000 |
|
value: 0.11499999999999999 |
|
- type: precision_at_3 |
|
value: 33.588 |
|
- type: precision_at_5 |
|
value: 20.642 |
|
- type: recall_at_1 |
|
value: 83.479 |
|
- type: recall_at_10 |
|
value: 94.971 |
|
- type: recall_at_100 |
|
value: 97.397 |
|
- type: recall_at_1000 |
|
value: 98.666 |
|
- type: recall_at_3 |
|
value: 92.24799999999999 |
|
- type: recall_at_5 |
|
value: 93.797 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB FiQA2018 |
|
revision: 27a168819829fe9bcd655c2df245fb19452e8e06 |
|
split: test |
|
type: mteb/fiqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.16 |
|
- type: map_at_10 |
|
value: 45.593 |
|
- type: map_at_100 |
|
value: 47.762 |
|
- type: map_at_1000 |
|
value: 47.899 |
|
- type: map_at_3 |
|
value: 39.237 |
|
- type: map_at_5 |
|
value: 42.970000000000006 |
|
- type: mrr_at_1 |
|
value: 52.623 |
|
- type: mrr_at_10 |
|
value: 62.637 |
|
- type: mrr_at_100 |
|
value: 63.169 |
|
- type: mrr_at_1000 |
|
value: 63.185 |
|
- type: mrr_at_3 |
|
value: 59.928000000000004 |
|
- type: mrr_at_5 |
|
value: 61.702999999999996 |
|
- type: ndcg_at_1 |
|
value: 52.623 |
|
- type: ndcg_at_10 |
|
value: 54.701 |
|
- type: ndcg_at_100 |
|
value: 61.263 |
|
- type: ndcg_at_1000 |
|
value: 63.134 |
|
- type: ndcg_at_3 |
|
value: 49.265 |
|
- type: ndcg_at_5 |
|
value: 51.665000000000006 |
|
- type: precision_at_1 |
|
value: 52.623 |
|
- type: precision_at_10 |
|
value: 15.185 |
|
- type: precision_at_100 |
|
value: 2.202 |
|
- type: precision_at_1000 |
|
value: 0.254 |
|
- type: precision_at_3 |
|
value: 32.767 |
|
- type: precision_at_5 |
|
value: 24.722 |
|
- type: recall_at_1 |
|
value: 27.16 |
|
- type: recall_at_10 |
|
value: 63.309000000000005 |
|
- type: recall_at_100 |
|
value: 86.722 |
|
- type: recall_at_1000 |
|
value: 97.505 |
|
- type: recall_at_3 |
|
value: 45.045 |
|
- type: recall_at_5 |
|
value: 54.02400000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB HotpotQA |
|
revision: ab518f4d6fcca38d87c25209f94beba119d02014 |
|
split: test |
|
type: mteb/hotpotqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 42.573 |
|
- type: map_at_10 |
|
value: 59.373 |
|
- type: map_at_100 |
|
value: 60.292 |
|
- type: map_at_1000 |
|
value: 60.358999999999995 |
|
- type: map_at_3 |
|
value: 56.159000000000006 |
|
- type: map_at_5 |
|
value: 58.123999999999995 |
|
- type: mrr_at_1 |
|
value: 85.14500000000001 |
|
- type: mrr_at_10 |
|
value: 89.25999999999999 |
|
- type: mrr_at_100 |
|
value: 89.373 |
|
- type: mrr_at_1000 |
|
value: 89.377 |
|
- type: mrr_at_3 |
|
value: 88.618 |
|
- type: mrr_at_5 |
|
value: 89.036 |
|
- type: ndcg_at_1 |
|
value: 85.14500000000001 |
|
- type: ndcg_at_10 |
|
value: 68.95 |
|
- type: ndcg_at_100 |
|
value: 71.95 |
|
- type: ndcg_at_1000 |
|
value: 73.232 |
|
- type: ndcg_at_3 |
|
value: 64.546 |
|
- type: ndcg_at_5 |
|
value: 66.945 |
|
- type: precision_at_1 |
|
value: 85.14500000000001 |
|
- type: precision_at_10 |
|
value: 13.865 |
|
- type: precision_at_100 |
|
value: 1.619 |
|
- type: precision_at_1000 |
|
value: 0.179 |
|
- type: precision_at_3 |
|
value: 39.703 |
|
- type: precision_at_5 |
|
value: 25.718000000000004 |
|
- type: recall_at_1 |
|
value: 42.573 |
|
- type: recall_at_10 |
|
value: 69.325 |
|
- type: recall_at_100 |
|
value: 80.932 |
|
- type: recall_at_1000 |
|
value: 89.446 |
|
- type: recall_at_3 |
|
value: 59.553999999999995 |
|
- type: recall_at_5 |
|
value: 64.294 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ImdbClassification |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
split: test |
|
type: mteb/imdb |
|
metrics: |
|
- type: accuracy |
|
value: 95.8336 |
|
- type: ap |
|
value: 93.78862962194073 |
|
- type: f1 |
|
value: 95.83192650728371 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MSMARCO |
|
revision: c5a29a104738b98a9e76336939199e264163d4a0 |
|
split: dev |
|
type: mteb/msmarco |
|
metrics: |
|
- type: map_at_1 |
|
value: 23.075000000000003 |
|
- type: map_at_10 |
|
value: 36.102000000000004 |
|
- type: map_at_100 |
|
value: 37.257 |
|
- type: map_at_1000 |
|
value: 37.3 |
|
- type: map_at_3 |
|
value: 32.144 |
|
- type: map_at_5 |
|
value: 34.359 |
|
- type: mrr_at_1 |
|
value: 23.711 |
|
- type: mrr_at_10 |
|
value: 36.671 |
|
- type: mrr_at_100 |
|
value: 37.763999999999996 |
|
- type: mrr_at_1000 |
|
value: 37.801 |
|
- type: mrr_at_3 |
|
value: 32.775 |
|
- type: mrr_at_5 |
|
value: 34.977000000000004 |
|
- type: ndcg_at_1 |
|
value: 23.711 |
|
- type: ndcg_at_10 |
|
value: 43.361 |
|
- type: ndcg_at_100 |
|
value: 48.839 |
|
- type: ndcg_at_1000 |
|
value: 49.88 |
|
- type: ndcg_at_3 |
|
value: 35.269 |
|
- type: ndcg_at_5 |
|
value: 39.224 |
|
- type: precision_at_1 |
|
value: 23.711 |
|
- type: precision_at_10 |
|
value: 6.866999999999999 |
|
- type: precision_at_100 |
|
value: 0.96 |
|
- type: precision_at_1000 |
|
value: 0.105 |
|
- type: precision_at_3 |
|
value: 15.096000000000002 |
|
- type: precision_at_5 |
|
value: 11.083 |
|
- type: recall_at_1 |
|
value: 23.075000000000003 |
|
- type: recall_at_10 |
|
value: 65.756 |
|
- type: recall_at_100 |
|
value: 90.88199999999999 |
|
- type: recall_at_1000 |
|
value: 98.739 |
|
- type: recall_at_3 |
|
value: 43.691 |
|
- type: recall_at_5 |
|
value: 53.15800000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: en |
|
name: MTEB MTOPDomainClassification (en) |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
split: test |
|
type: mteb/mtop_domain |
|
metrics: |
|
- type: accuracy |
|
value: 97.69493844049248 |
|
- type: f1 |
|
value: 97.55048089616261 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MTOPIntentClassification (en) |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
split: test |
|
type: mteb/mtop_intent |
|
metrics: |
|
- type: accuracy |
|
value: 88.75968992248062 |
|
- type: f1 |
|
value: 72.26321223399123 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MassiveIntentClassification (en) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 82.40080699394754 |
|
- type: f1 |
|
value: 79.62590029057968 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: en |
|
name: MTEB MassiveScenarioClassification (en) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 84.49562878278414 |
|
- type: f1 |
|
value: 84.0040193313333 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MedrxivClusteringP2P |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
split: test |
|
type: mteb/medrxiv-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 39.386760057101945 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MedrxivClusteringS2S |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
split: test |
|
type: mteb/medrxiv-clustering-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 37.89687154075537 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MindSmallReranking |
|
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 |
|
split: test |
|
type: mteb/mind_small |
|
metrics: |
|
- type: map |
|
value: 33.94151656057482 |
|
- type: mrr |
|
value: 35.32684700746953 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB NFCorpus |
|
revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 |
|
split: test |
|
type: mteb/nfcorpus |
|
metrics: |
|
- type: map_at_1 |
|
value: 6.239999999999999 |
|
- type: map_at_10 |
|
value: 14.862 |
|
- type: map_at_100 |
|
value: 18.955 |
|
- type: map_at_1000 |
|
value: 20.694000000000003 |
|
- type: map_at_3 |
|
value: 10.683 |
|
- type: map_at_5 |
|
value: 12.674 |
|
- type: mrr_at_1 |
|
value: 50.15500000000001 |
|
- type: mrr_at_10 |
|
value: 59.697 |
|
- type: mrr_at_100 |
|
value: 60.095 |
|
- type: mrr_at_1000 |
|
value: 60.129999999999995 |
|
- type: mrr_at_3 |
|
value: 58.35900000000001 |
|
- type: mrr_at_5 |
|
value: 58.839 |
|
- type: ndcg_at_1 |
|
value: 48.452 |
|
- type: ndcg_at_10 |
|
value: 39.341 |
|
- type: ndcg_at_100 |
|
value: 35.866 |
|
- type: ndcg_at_1000 |
|
value: 45.111000000000004 |
|
- type: ndcg_at_3 |
|
value: 44.527 |
|
- type: ndcg_at_5 |
|
value: 42.946 |
|
- type: precision_at_1 |
|
value: 50.15500000000001 |
|
- type: precision_at_10 |
|
value: 29.536 |
|
- type: precision_at_100 |
|
value: 9.142 |
|
- type: precision_at_1000 |
|
value: 2.2849999999999997 |
|
- type: precision_at_3 |
|
value: 41.899 |
|
- type: precision_at_5 |
|
value: 37.647000000000006 |
|
- type: recall_at_1 |
|
value: 6.239999999999999 |
|
- type: recall_at_10 |
|
value: 19.278000000000002 |
|
- type: recall_at_100 |
|
value: 36.074 |
|
- type: recall_at_1000 |
|
value: 70.017 |
|
- type: recall_at_3 |
|
value: 12.066 |
|
- type: recall_at_5 |
|
value: 15.254000000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB NQ |
|
revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 |
|
split: test |
|
type: mteb/nq |
|
metrics: |
|
- type: map_at_1 |
|
value: 39.75 |
|
- type: map_at_10 |
|
value: 56.443 |
|
- type: map_at_100 |
|
value: 57.233999999999995 |
|
- type: map_at_1000 |
|
value: 57.249 |
|
- type: map_at_3 |
|
value: 52.032999999999994 |
|
- type: map_at_5 |
|
value: 54.937999999999995 |
|
- type: mrr_at_1 |
|
value: 44.728 |
|
- type: mrr_at_10 |
|
value: 58.939 |
|
- type: mrr_at_100 |
|
value: 59.489000000000004 |
|
- type: mrr_at_1000 |
|
value: 59.499 |
|
- type: mrr_at_3 |
|
value: 55.711999999999996 |
|
- type: mrr_at_5 |
|
value: 57.89 |
|
- type: ndcg_at_1 |
|
value: 44.728 |
|
- type: ndcg_at_10 |
|
value: 63.998999999999995 |
|
- type: ndcg_at_100 |
|
value: 67.077 |
|
- type: ndcg_at_1000 |
|
value: 67.40899999999999 |
|
- type: ndcg_at_3 |
|
value: 56.266000000000005 |
|
- type: ndcg_at_5 |
|
value: 60.88 |
|
- type: precision_at_1 |
|
value: 44.728 |
|
- type: precision_at_10 |
|
value: 10.09 |
|
- type: precision_at_100 |
|
value: 1.1809999999999998 |
|
- type: precision_at_1000 |
|
value: 0.121 |
|
- type: precision_at_3 |
|
value: 25.145 |
|
- type: precision_at_5 |
|
value: 17.822 |
|
- type: recall_at_1 |
|
value: 39.75 |
|
- type: recall_at_10 |
|
value: 84.234 |
|
- type: recall_at_100 |
|
value: 97.055 |
|
- type: recall_at_1000 |
|
value: 99.517 |
|
- type: recall_at_3 |
|
value: 64.851 |
|
- type: recall_at_5 |
|
value: 75.343 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB QuoraRetrieval |
|
revision: None |
|
split: test |
|
type: mteb/quora |
|
metrics: |
|
- type: map_at_1 |
|
value: 72.085 |
|
- type: map_at_10 |
|
value: 86.107 |
|
- type: map_at_100 |
|
value: 86.727 |
|
- type: map_at_1000 |
|
value: 86.74 |
|
- type: map_at_3 |
|
value: 83.21 |
|
- type: map_at_5 |
|
value: 85.06 |
|
- type: mrr_at_1 |
|
value: 82.94 |
|
- type: mrr_at_10 |
|
value: 88.845 |
|
- type: mrr_at_100 |
|
value: 88.926 |
|
- type: mrr_at_1000 |
|
value: 88.927 |
|
- type: mrr_at_3 |
|
value: 87.993 |
|
- type: mrr_at_5 |
|
value: 88.62299999999999 |
|
- type: ndcg_at_1 |
|
value: 82.97 |
|
- type: ndcg_at_10 |
|
value: 89.645 |
|
- type: ndcg_at_100 |
|
value: 90.717 |
|
- type: ndcg_at_1000 |
|
value: 90.78 |
|
- type: ndcg_at_3 |
|
value: 86.99900000000001 |
|
- type: ndcg_at_5 |
|
value: 88.52600000000001 |
|
- type: precision_at_1 |
|
value: 82.97 |
|
- type: precision_at_10 |
|
value: 13.569 |
|
- type: precision_at_100 |
|
value: 1.539 |
|
- type: precision_at_1000 |
|
value: 0.157 |
|
- type: precision_at_3 |
|
value: 38.043 |
|
- type: precision_at_5 |
|
value: 24.992 |
|
- type: recall_at_1 |
|
value: 72.085 |
|
- type: recall_at_10 |
|
value: 96.262 |
|
- type: recall_at_100 |
|
value: 99.77000000000001 |
|
- type: recall_at_1000 |
|
value: 99.997 |
|
- type: recall_at_3 |
|
value: 88.652 |
|
- type: recall_at_5 |
|
value: 93.01899999999999 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB RedditClustering |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
split: test |
|
type: mteb/reddit-clustering |
|
metrics: |
|
- type: v_measure |
|
value: 55.82153952668092 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB RedditClusteringP2P |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
split: test |
|
type: mteb/reddit-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 62.094465801879295 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB SCIDOCS |
|
revision: None |
|
split: test |
|
type: mteb/scidocs |
|
metrics: |
|
- type: map_at_1 |
|
value: 5.688 |
|
- type: map_at_10 |
|
value: 15.201999999999998 |
|
- type: map_at_100 |
|
value: 18.096 |
|
- type: map_at_1000 |
|
value: 18.481 |
|
- type: map_at_3 |
|
value: 10.734 |
|
- type: map_at_5 |
|
value: 12.94 |
|
- type: mrr_at_1 |
|
value: 28.000000000000004 |
|
- type: mrr_at_10 |
|
value: 41.101 |
|
- type: mrr_at_100 |
|
value: 42.202 |
|
- type: mrr_at_1000 |
|
value: 42.228 |
|
- type: mrr_at_3 |
|
value: 37.683 |
|
- type: mrr_at_5 |
|
value: 39.708 |
|
- type: ndcg_at_1 |
|
value: 28.000000000000004 |
|
- type: ndcg_at_10 |
|
value: 24.976000000000003 |
|
- type: ndcg_at_100 |
|
value: 35.129 |
|
- type: ndcg_at_1000 |
|
value: 40.77 |
|
- type: ndcg_at_3 |
|
value: 23.787 |
|
- type: ndcg_at_5 |
|
value: 20.816000000000003 |
|
- type: precision_at_1 |
|
value: 28.000000000000004 |
|
- type: precision_at_10 |
|
value: 13.04 |
|
- type: precision_at_100 |
|
value: 2.761 |
|
- type: precision_at_1000 |
|
value: 0.41000000000000003 |
|
- type: precision_at_3 |
|
value: 22.6 |
|
- type: precision_at_5 |
|
value: 18.52 |
|
- type: recall_at_1 |
|
value: 5.688 |
|
- type: recall_at_10 |
|
value: 26.43 |
|
- type: recall_at_100 |
|
value: 56.02 |
|
- type: recall_at_1000 |
|
value: 83.21 |
|
- type: recall_at_3 |
|
value: 13.752 |
|
- type: recall_at_5 |
|
value: 18.777 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-R |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
split: test |
|
type: mteb/sickr-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.15084859283178 |
|
- type: cos_sim_spearman |
|
value: 80.49030614009419 |
|
- type: euclidean_pearson |
|
value: 81.84574978672468 |
|
- type: euclidean_spearman |
|
value: 79.89787150656818 |
|
- type: manhattan_pearson |
|
value: 81.63076538567131 |
|
- type: manhattan_spearman |
|
value: 79.69867352121841 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS12 |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
split: test |
|
type: mteb/sts12-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.64097921490992 |
|
- type: cos_sim_spearman |
|
value: 77.25370084896514 |
|
- type: euclidean_pearson |
|
value: 82.71210826468788 |
|
- type: euclidean_spearman |
|
value: 78.50445584994826 |
|
- type: manhattan_pearson |
|
value: 82.92580164330298 |
|
- type: manhattan_spearman |
|
value: 78.69686891301019 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS13 |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
split: test |
|
type: mteb/sts13-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.24596417308994 |
|
- type: cos_sim_spearman |
|
value: 87.79454220555091 |
|
- type: euclidean_pearson |
|
value: 87.40242561671164 |
|
- type: euclidean_spearman |
|
value: 88.25955597373556 |
|
- type: manhattan_pearson |
|
value: 87.25160240485849 |
|
- type: manhattan_spearman |
|
value: 88.155794979818 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS14 |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
split: test |
|
type: mteb/sts14-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.44914233422564 |
|
- type: cos_sim_spearman |
|
value: 82.91015471820322 |
|
- type: euclidean_pearson |
|
value: 84.7206656630327 |
|
- type: euclidean_spearman |
|
value: 83.86408872059216 |
|
- type: manhattan_pearson |
|
value: 84.72816725158454 |
|
- type: manhattan_spearman |
|
value: 84.01603388572788 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS15 |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
split: test |
|
type: mteb/sts15-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.6168026237477 |
|
- type: cos_sim_spearman |
|
value: 88.45414278092397 |
|
- type: euclidean_pearson |
|
value: 88.57023240882022 |
|
- type: euclidean_spearman |
|
value: 89.04102190922094 |
|
- type: manhattan_pearson |
|
value: 88.66695535796354 |
|
- type: manhattan_spearman |
|
value: 89.19898476680969 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STS16 |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
split: test |
|
type: mteb/sts16-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.27925826089424 |
|
- type: cos_sim_spearman |
|
value: 85.45291099550461 |
|
- type: euclidean_pearson |
|
value: 83.63853036580834 |
|
- type: euclidean_spearman |
|
value: 84.33468035821484 |
|
- type: manhattan_pearson |
|
value: 83.72778773251596 |
|
- type: manhattan_spearman |
|
value: 84.51583132445376 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en-en |
|
name: MTEB STS17 (en-en) |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
split: test |
|
type: mteb/sts17-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 89.67375185692552 |
|
- type: cos_sim_spearman |
|
value: 90.32542469203855 |
|
- type: euclidean_pearson |
|
value: 89.63513717951847 |
|
- type: euclidean_spearman |
|
value: 89.87760271003745 |
|
- type: manhattan_pearson |
|
value: 89.28381452982924 |
|
- type: manhattan_spearman |
|
value: 89.53568197785721 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: en |
|
name: MTEB STS22 (en) |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.24644693819846 |
|
- type: cos_sim_spearman |
|
value: 66.09889420525377 |
|
- type: euclidean_pearson |
|
value: 63.72551583520747 |
|
- type: euclidean_spearman |
|
value: 63.01385470780679 |
|
- type: manhattan_pearson |
|
value: 64.09258157214097 |
|
- type: manhattan_spearman |
|
value: 63.080517752822594 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSBenchmark |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
split: test |
|
type: mteb/stsbenchmark-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.27321463839989 |
|
- type: cos_sim_spearman |
|
value: 86.37572865993327 |
|
- type: euclidean_pearson |
|
value: 86.36268020198149 |
|
- type: euclidean_spearman |
|
value: 86.31089339478922 |
|
- type: manhattan_pearson |
|
value: 86.4260445761947 |
|
- type: manhattan_spearman |
|
value: 86.45885895320457 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SciDocsRR |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
split: test |
|
type: mteb/scidocs-reranking |
|
metrics: |
|
- type: map |
|
value: 86.52456702387798 |
|
- type: mrr |
|
value: 96.34556529164372 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB SciFact |
|
revision: 0228b52cf27578f30900b9e5271d331663a030d7 |
|
split: test |
|
type: mteb/scifact |
|
metrics: |
|
- type: map_at_1 |
|
value: 61.99400000000001 |
|
- type: map_at_10 |
|
value: 73.38799999999999 |
|
- type: map_at_100 |
|
value: 73.747 |
|
- type: map_at_1000 |
|
value: 73.75 |
|
- type: map_at_3 |
|
value: 70.04599999999999 |
|
- type: map_at_5 |
|
value: 72.095 |
|
- type: mrr_at_1 |
|
value: 65.0 |
|
- type: mrr_at_10 |
|
value: 74.42800000000001 |
|
- type: mrr_at_100 |
|
value: 74.722 |
|
- type: mrr_at_1000 |
|
value: 74.725 |
|
- type: mrr_at_3 |
|
value: 72.056 |
|
- type: mrr_at_5 |
|
value: 73.60600000000001 |
|
- type: ndcg_at_1 |
|
value: 65.0 |
|
- type: ndcg_at_10 |
|
value: 78.435 |
|
- type: ndcg_at_100 |
|
value: 79.922 |
|
- type: ndcg_at_1000 |
|
value: 80.00500000000001 |
|
- type: ndcg_at_3 |
|
value: 73.05199999999999 |
|
- type: ndcg_at_5 |
|
value: 75.98 |
|
- type: precision_at_1 |
|
value: 65.0 |
|
- type: precision_at_10 |
|
value: 10.5 |
|
- type: precision_at_100 |
|
value: 1.123 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 28.555999999999997 |
|
- type: precision_at_5 |
|
value: 19.0 |
|
- type: recall_at_1 |
|
value: 61.99400000000001 |
|
- type: recall_at_10 |
|
value: 92.72200000000001 |
|
- type: recall_at_100 |
|
value: 99.333 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 78.739 |
|
- type: recall_at_5 |
|
value: 85.828 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SprintDuplicateQuestions |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
split: test |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.79009900990098 |
|
- type: cos_sim_ap |
|
value: 95.3203137438653 |
|
- type: cos_sim_f1 |
|
value: 89.12386706948641 |
|
- type: cos_sim_precision |
|
value: 89.75659229208925 |
|
- type: cos_sim_recall |
|
value: 88.5 |
|
- type: dot_accuracy |
|
value: 99.67821782178218 |
|
- type: dot_ap |
|
value: 89.94069840000675 |
|
- type: dot_f1 |
|
value: 83.45902463549521 |
|
- type: dot_precision |
|
value: 83.9231547017189 |
|
- type: dot_recall |
|
value: 83.0 |
|
- type: euclidean_accuracy |
|
value: 99.78613861386138 |
|
- type: euclidean_ap |
|
value: 95.10648259135526 |
|
- type: euclidean_f1 |
|
value: 88.77338877338877 |
|
- type: euclidean_precision |
|
value: 92.42424242424242 |
|
- type: euclidean_recall |
|
value: 85.39999999999999 |
|
- type: manhattan_accuracy |
|
value: 99.7950495049505 |
|
- type: manhattan_ap |
|
value: 95.29987661320946 |
|
- type: manhattan_f1 |
|
value: 89.21313183949972 |
|
- type: manhattan_precision |
|
value: 93.14472252448314 |
|
- type: manhattan_recall |
|
value: 85.6 |
|
- type: max_accuracy |
|
value: 99.7950495049505 |
|
- type: max_ap |
|
value: 95.3203137438653 |
|
- type: max_f1 |
|
value: 89.21313183949972 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB StackExchangeClustering |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
split: test |
|
type: mteb/stackexchange-clustering |
|
metrics: |
|
- type: v_measure |
|
value: 67.65446577183913 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB StackExchangeClusteringP2P |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
split: test |
|
type: mteb/stackexchange-clustering-p2p |
|
metrics: |
|
- type: v_measure |
|
value: 46.30749237193961 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB StackOverflowDupQuestions |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
split: test |
|
type: mteb/stackoverflowdupquestions-reranking |
|
metrics: |
|
- type: map |
|
value: 54.91481849959949 |
|
- type: mrr |
|
value: 55.853506175197346 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB SummEval |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
split: test |
|
type: mteb/summeval |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.08196549170419 |
|
- type: cos_sim_spearman |
|
value: 31.16661390597077 |
|
- type: dot_pearson |
|
value: 29.892258410943466 |
|
- type: dot_spearman |
|
value: 30.51328811965085 |
|
task: |
|
type: Summarization |
|
- dataset: |
|
config: default |
|
name: MTEB TRECCOVID |
|
revision: None |
|
split: test |
|
type: mteb/trec-covid |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.23900000000000002 |
|
- type: map_at_10 |
|
value: 2.173 |
|
- type: map_at_100 |
|
value: 14.24 |
|
- type: map_at_1000 |
|
value: 35.309000000000005 |
|
- type: map_at_3 |
|
value: 0.7100000000000001 |
|
- type: map_at_5 |
|
value: 1.163 |
|
- type: mrr_at_1 |
|
value: 92.0 |
|
- type: mrr_at_10 |
|
value: 96.0 |
|
- type: mrr_at_100 |
|
value: 96.0 |
|
- type: mrr_at_1000 |
|
value: 96.0 |
|
- type: mrr_at_3 |
|
value: 96.0 |
|
- type: mrr_at_5 |
|
value: 96.0 |
|
- type: ndcg_at_1 |
|
value: 90.0 |
|
- type: ndcg_at_10 |
|
value: 85.382 |
|
- type: ndcg_at_100 |
|
value: 68.03 |
|
- type: ndcg_at_1000 |
|
value: 61.021 |
|
- type: ndcg_at_3 |
|
value: 89.765 |
|
- type: ndcg_at_5 |
|
value: 88.444 |
|
- type: precision_at_1 |
|
value: 92.0 |
|
- type: precision_at_10 |
|
value: 88.0 |
|
- type: precision_at_100 |
|
value: 70.02000000000001 |
|
- type: precision_at_1000 |
|
value: 26.984 |
|
- type: precision_at_3 |
|
value: 94.0 |
|
- type: precision_at_5 |
|
value: 92.80000000000001 |
|
- type: recall_at_1 |
|
value: 0.23900000000000002 |
|
- type: recall_at_10 |
|
value: 2.313 |
|
- type: recall_at_100 |
|
value: 17.049 |
|
- type: recall_at_1000 |
|
value: 57.489999999999995 |
|
- type: recall_at_3 |
|
value: 0.737 |
|
- type: recall_at_5 |
|
value: 1.221 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Touche2020 |
|
revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f |
|
split: test |
|
type: mteb/touche2020 |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.75 |
|
- type: map_at_10 |
|
value: 11.29 |
|
- type: map_at_100 |
|
value: 18.032999999999998 |
|
- type: map_at_1000 |
|
value: 19.746 |
|
- type: map_at_3 |
|
value: 6.555 |
|
- type: map_at_5 |
|
value: 8.706999999999999 |
|
- type: mrr_at_1 |
|
value: 34.694 |
|
- type: mrr_at_10 |
|
value: 50.55 |
|
- type: mrr_at_100 |
|
value: 51.659 |
|
- type: mrr_at_1000 |
|
value: 51.659 |
|
- type: mrr_at_3 |
|
value: 47.278999999999996 |
|
- type: mrr_at_5 |
|
value: 49.728 |
|
- type: ndcg_at_1 |
|
value: 32.653 |
|
- type: ndcg_at_10 |
|
value: 27.894000000000002 |
|
- type: ndcg_at_100 |
|
value: 39.769 |
|
- type: ndcg_at_1000 |
|
value: 51.495999999999995 |
|
- type: ndcg_at_3 |
|
value: 32.954 |
|
- type: ndcg_at_5 |
|
value: 31.502999999999997 |
|
- type: precision_at_1 |
|
value: 34.694 |
|
- type: precision_at_10 |
|
value: 23.265 |
|
- type: precision_at_100 |
|
value: 7.898 |
|
- type: precision_at_1000 |
|
value: 1.58 |
|
- type: precision_at_3 |
|
value: 34.694 |
|
- type: precision_at_5 |
|
value: 31.429000000000002 |
|
- type: recall_at_1 |
|
value: 2.75 |
|
- type: recall_at_10 |
|
value: 16.953 |
|
- type: recall_at_100 |
|
value: 48.68 |
|
- type: recall_at_1000 |
|
value: 85.18599999999999 |
|
- type: recall_at_3 |
|
value: 7.710999999999999 |
|
- type: recall_at_5 |
|
value: 11.484 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB ToxicConversationsClassification |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
split: test |
|
type: mteb/toxic_conversations_50k |
|
metrics: |
|
- type: accuracy |
|
value: 82.66099999999999 |
|
- type: ap |
|
value: 25.555698090238337 |
|
- type: f1 |
|
value: 66.48402012461622 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB TweetSentimentExtractionClassification |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
split: test |
|
type: mteb/tweet_sentiment_extraction |
|
metrics: |
|
- type: accuracy |
|
value: 72.94567062818335 |
|
- type: f1 |
|
value: 73.28139189595674 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB TwentyNewsgroupsClustering |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
split: test |
|
type: mteb/twentynewsgroups-clustering |
|
metrics: |
|
- type: v_measure |
|
value: 49.581627240203474 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB TwitterSemEval2015 |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
split: test |
|
type: mteb/twittersemeval2015-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.78089050485785 |
|
- type: cos_sim_ap |
|
value: 79.64487116574168 |
|
- type: cos_sim_f1 |
|
value: 72.46563021970964 |
|
- type: cos_sim_precision |
|
value: 70.62359128474831 |
|
- type: cos_sim_recall |
|
value: 74.40633245382587 |
|
- type: dot_accuracy |
|
value: 86.2609524944865 |
|
- type: dot_ap |
|
value: 75.513046857613 |
|
- type: dot_f1 |
|
value: 68.58213616489695 |
|
- type: dot_precision |
|
value: 65.12455516014235 |
|
- type: dot_recall |
|
value: 72.42744063324538 |
|
- type: euclidean_accuracy |
|
value: 87.6080348095607 |
|
- type: euclidean_ap |
|
value: 79.00204933649795 |
|
- type: euclidean_f1 |
|
value: 72.14495342605589 |
|
- type: euclidean_precision |
|
value: 69.85421299728193 |
|
- type: euclidean_recall |
|
value: 74.5910290237467 |
|
- type: manhattan_accuracy |
|
value: 87.59611372712642 |
|
- type: manhattan_ap |
|
value: 78.78523756706264 |
|
- type: manhattan_f1 |
|
value: 71.86499137718648 |
|
- type: manhattan_precision |
|
value: 67.39833641404806 |
|
- type: manhattan_recall |
|
value: 76.96569920844327 |
|
- type: max_accuracy |
|
value: 87.78089050485785 |
|
- type: max_ap |
|
value: 79.64487116574168 |
|
- type: max_f1 |
|
value: 72.46563021970964 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB TwitterURLCorpus |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
split: test |
|
type: mteb/twitterurlcorpus-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 89.98719292117825 |
|
- type: cos_sim_ap |
|
value: 87.58146137353202 |
|
- type: cos_sim_f1 |
|
value: 80.28543232369239 |
|
- type: cos_sim_precision |
|
value: 79.1735289714029 |
|
- type: cos_sim_recall |
|
value: 81.42901139513397 |
|
- type: dot_accuracy |
|
value: 88.9199363526992 |
|
- type: dot_ap |
|
value: 84.98499998630417 |
|
- type: dot_f1 |
|
value: 78.21951400757969 |
|
- type: dot_precision |
|
value: 75.58523624874336 |
|
- type: dot_recall |
|
value: 81.04404065291038 |
|
- type: euclidean_accuracy |
|
value: 89.77374160748244 |
|
- type: euclidean_ap |
|
value: 87.35151562835209 |
|
- type: euclidean_f1 |
|
value: 79.92160922940393 |
|
- type: euclidean_precision |
|
value: 76.88531587933979 |
|
- type: euclidean_recall |
|
value: 83.20757622420696 |
|
- type: manhattan_accuracy |
|
value: 89.72717041176699 |
|
- type: manhattan_ap |
|
value: 87.34065592142515 |
|
- type: manhattan_f1 |
|
value: 79.85603419187943 |
|
- type: manhattan_precision |
|
value: 77.82243332115455 |
|
- type: manhattan_recall |
|
value: 81.99876809362489 |
|
- type: max_accuracy |
|
value: 89.98719292117825 |
|
- type: max_ap |
|
value: 87.58146137353202 |
|
- type: max_f1 |
|
value: 80.28543232369239 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB AFQMC |
|
revision: b44c3b011063adb25877c13823db83bb193913c4 |
|
split: validation |
|
type: C-MTEB/AFQMC |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 53.45954203592337 |
|
- type: cos_sim_spearman |
|
value: 58.42154680418638 |
|
- type: euclidean_pearson |
|
value: 56.41543791722753 |
|
- type: euclidean_spearman |
|
value: 58.39328016640146 |
|
- type: manhattan_pearson |
|
value: 56.318510356833876 |
|
- type: manhattan_spearman |
|
value: 58.28423447818184 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB ATEC |
|
revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 |
|
split: test |
|
type: C-MTEB/ATEC |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 50.78356460675945 |
|
- type: cos_sim_spearman |
|
value: 55.6530411663269 |
|
- type: euclidean_pearson |
|
value: 56.50763660417816 |
|
- type: euclidean_spearman |
|
value: 55.733823335669065 |
|
- type: manhattan_pearson |
|
value: 56.45323093512866 |
|
- type: manhattan_spearman |
|
value: 55.63248619032702 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh |
|
name: MTEB AmazonReviewsClassification (zh) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 47.209999999999994 |
|
- type: f1 |
|
value: 46.08892432018655 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BQ |
|
revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 |
|
split: test |
|
type: C-MTEB/BQ |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 70.25573992001478 |
|
- type: cos_sim_spearman |
|
value: 73.85247134951433 |
|
- type: euclidean_pearson |
|
value: 72.60033082168442 |
|
- type: euclidean_spearman |
|
value: 73.72445893756499 |
|
- type: manhattan_pearson |
|
value: 72.59932284620231 |
|
- type: manhattan_spearman |
|
value: 73.68002490614583 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB CLSClusteringP2P |
|
revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 |
|
split: test |
|
type: C-MTEB/CLSClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 45.21317724305628 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CLSClusteringS2S |
|
revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f |
|
split: test |
|
type: C-MTEB/CLSClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 42.49825170976724 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB CMedQAv1 |
|
revision: 8d7f1e942507dac42dc58017c1a001c3717da7df |
|
split: test |
|
type: C-MTEB/CMedQAv1-reranking |
|
metrics: |
|
- type: map |
|
value: 88.15661686810597 |
|
- type: mrr |
|
value: 90.11222222222223 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB CMedQAv2 |
|
revision: 23d186750531a14a0357ca22cd92d712fd512ea0 |
|
split: test |
|
type: C-MTEB/CMedQAv2-reranking |
|
metrics: |
|
- type: map |
|
value: 88.1204726064383 |
|
- type: mrr |
|
value: 90.20142857142858 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB CmedqaRetrieval |
|
revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 |
|
split: dev |
|
type: C-MTEB/CmedqaRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.224999999999998 |
|
- type: map_at_10 |
|
value: 40.169 |
|
- type: map_at_100 |
|
value: 42.0 |
|
- type: map_at_1000 |
|
value: 42.109 |
|
- type: map_at_3 |
|
value: 35.76 |
|
- type: map_at_5 |
|
value: 38.221 |
|
- type: mrr_at_1 |
|
value: 40.56 |
|
- type: mrr_at_10 |
|
value: 49.118 |
|
- type: mrr_at_100 |
|
value: 50.092999999999996 |
|
- type: mrr_at_1000 |
|
value: 50.133 |
|
- type: mrr_at_3 |
|
value: 46.507 |
|
- type: mrr_at_5 |
|
value: 47.973 |
|
- type: ndcg_at_1 |
|
value: 40.56 |
|
- type: ndcg_at_10 |
|
value: 46.972 |
|
- type: ndcg_at_100 |
|
value: 54.04 |
|
- type: ndcg_at_1000 |
|
value: 55.862 |
|
- type: ndcg_at_3 |
|
value: 41.36 |
|
- type: ndcg_at_5 |
|
value: 43.704 |
|
- type: precision_at_1 |
|
value: 40.56 |
|
- type: precision_at_10 |
|
value: 10.302999999999999 |
|
- type: precision_at_100 |
|
value: 1.606 |
|
- type: precision_at_1000 |
|
value: 0.184 |
|
- type: precision_at_3 |
|
value: 23.064 |
|
- type: precision_at_5 |
|
value: 16.764000000000003 |
|
- type: recall_at_1 |
|
value: 27.224999999999998 |
|
- type: recall_at_10 |
|
value: 58.05200000000001 |
|
- type: recall_at_100 |
|
value: 87.092 |
|
- type: recall_at_1000 |
|
value: 99.099 |
|
- type: recall_at_3 |
|
value: 41.373 |
|
- type: recall_at_5 |
|
value: 48.453 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Cmnli |
|
revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 |
|
split: validation |
|
type: C-MTEB/CMNLI |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 77.40228502705953 |
|
- type: cos_sim_ap |
|
value: 86.22359172956327 |
|
- type: cos_sim_f1 |
|
value: 78.96328293736501 |
|
- type: cos_sim_precision |
|
value: 73.36945615091311 |
|
- type: cos_sim_recall |
|
value: 85.48047696983868 |
|
- type: dot_accuracy |
|
value: 75.53818400481059 |
|
- type: dot_ap |
|
value: 83.70164011305312 |
|
- type: dot_f1 |
|
value: 77.67298719348754 |
|
- type: dot_precision |
|
value: 67.49482401656314 |
|
- type: dot_recall |
|
value: 91.46598082768296 |
|
- type: euclidean_accuracy |
|
value: 77.94347564642213 |
|
- type: euclidean_ap |
|
value: 86.4652108728609 |
|
- type: euclidean_f1 |
|
value: 79.15555555555555 |
|
- type: euclidean_precision |
|
value: 75.41816641964853 |
|
- type: euclidean_recall |
|
value: 83.28267477203647 |
|
- type: manhattan_accuracy |
|
value: 77.45039085989175 |
|
- type: manhattan_ap |
|
value: 86.09986583900665 |
|
- type: manhattan_f1 |
|
value: 78.93669264438988 |
|
- type: manhattan_precision |
|
value: 72.63261296660117 |
|
- type: manhattan_recall |
|
value: 86.43909282207154 |
|
- type: max_accuracy |
|
value: 77.94347564642213 |
|
- type: max_ap |
|
value: 86.4652108728609 |
|
- type: max_f1 |
|
value: 79.15555555555555 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB CovidRetrieval |
|
revision: 1271c7809071a13532e05f25fb53511ffce77117 |
|
split: dev |
|
type: C-MTEB/CovidRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 69.336 |
|
- type: map_at_10 |
|
value: 77.16 |
|
- type: map_at_100 |
|
value: 77.47500000000001 |
|
- type: map_at_1000 |
|
value: 77.482 |
|
- type: map_at_3 |
|
value: 75.42999999999999 |
|
- type: map_at_5 |
|
value: 76.468 |
|
- type: mrr_at_1 |
|
value: 69.44200000000001 |
|
- type: mrr_at_10 |
|
value: 77.132 |
|
- type: mrr_at_100 |
|
value: 77.43299999999999 |
|
- type: mrr_at_1000 |
|
value: 77.44 |
|
- type: mrr_at_3 |
|
value: 75.395 |
|
- type: mrr_at_5 |
|
value: 76.459 |
|
- type: ndcg_at_1 |
|
value: 69.547 |
|
- type: ndcg_at_10 |
|
value: 80.794 |
|
- type: ndcg_at_100 |
|
value: 82.245 |
|
- type: ndcg_at_1000 |
|
value: 82.40899999999999 |
|
- type: ndcg_at_3 |
|
value: 77.303 |
|
- type: ndcg_at_5 |
|
value: 79.168 |
|
- type: precision_at_1 |
|
value: 69.547 |
|
- type: precision_at_10 |
|
value: 9.305 |
|
- type: precision_at_100 |
|
value: 0.9979999999999999 |
|
- type: precision_at_1000 |
|
value: 0.101 |
|
- type: precision_at_3 |
|
value: 27.749000000000002 |
|
- type: precision_at_5 |
|
value: 17.576 |
|
- type: recall_at_1 |
|
value: 69.336 |
|
- type: recall_at_10 |
|
value: 92.097 |
|
- type: recall_at_100 |
|
value: 98.736 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 82.64 |
|
- type: recall_at_5 |
|
value: 87.144 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB DuRetrieval |
|
revision: a1a333e290fe30b10f3f56498e3a0d911a693ced |
|
split: dev |
|
type: C-MTEB/DuRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 26.817999999999998 |
|
- type: map_at_10 |
|
value: 82.67 |
|
- type: map_at_100 |
|
value: 85.304 |
|
- type: map_at_1000 |
|
value: 85.334 |
|
- type: map_at_3 |
|
value: 57.336 |
|
- type: map_at_5 |
|
value: 72.474 |
|
- type: mrr_at_1 |
|
value: 91.45 |
|
- type: mrr_at_10 |
|
value: 94.272 |
|
- type: mrr_at_100 |
|
value: 94.318 |
|
- type: mrr_at_1000 |
|
value: 94.32000000000001 |
|
- type: mrr_at_3 |
|
value: 94.0 |
|
- type: mrr_at_5 |
|
value: 94.17699999999999 |
|
- type: ndcg_at_1 |
|
value: 91.45 |
|
- type: ndcg_at_10 |
|
value: 89.404 |
|
- type: ndcg_at_100 |
|
value: 91.724 |
|
- type: ndcg_at_1000 |
|
value: 91.973 |
|
- type: ndcg_at_3 |
|
value: 88.104 |
|
- type: ndcg_at_5 |
|
value: 87.25699999999999 |
|
- type: precision_at_1 |
|
value: 91.45 |
|
- type: precision_at_10 |
|
value: 42.585 |
|
- type: precision_at_100 |
|
value: 4.838 |
|
- type: precision_at_1000 |
|
value: 0.49 |
|
- type: precision_at_3 |
|
value: 78.8 |
|
- type: precision_at_5 |
|
value: 66.66 |
|
- type: recall_at_1 |
|
value: 26.817999999999998 |
|
- type: recall_at_10 |
|
value: 90.67 |
|
- type: recall_at_100 |
|
value: 98.36200000000001 |
|
- type: recall_at_1000 |
|
value: 99.583 |
|
- type: recall_at_3 |
|
value: 59.614999999999995 |
|
- type: recall_at_5 |
|
value: 77.05199999999999 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB EcomRetrieval |
|
revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 |
|
split: dev |
|
type: C-MTEB/EcomRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 47.699999999999996 |
|
- type: map_at_10 |
|
value: 57.589999999999996 |
|
- type: map_at_100 |
|
value: 58.226 |
|
- type: map_at_1000 |
|
value: 58.251 |
|
- type: map_at_3 |
|
value: 55.233 |
|
- type: map_at_5 |
|
value: 56.633 |
|
- type: mrr_at_1 |
|
value: 47.699999999999996 |
|
- type: mrr_at_10 |
|
value: 57.589999999999996 |
|
- type: mrr_at_100 |
|
value: 58.226 |
|
- type: mrr_at_1000 |
|
value: 58.251 |
|
- type: mrr_at_3 |
|
value: 55.233 |
|
- type: mrr_at_5 |
|
value: 56.633 |
|
- type: ndcg_at_1 |
|
value: 47.699999999999996 |
|
- type: ndcg_at_10 |
|
value: 62.505 |
|
- type: ndcg_at_100 |
|
value: 65.517 |
|
- type: ndcg_at_1000 |
|
value: 66.19800000000001 |
|
- type: ndcg_at_3 |
|
value: 57.643 |
|
- type: ndcg_at_5 |
|
value: 60.181 |
|
- type: precision_at_1 |
|
value: 47.699999999999996 |
|
- type: precision_at_10 |
|
value: 7.8 |
|
- type: precision_at_100 |
|
value: 0.919 |
|
- type: precision_at_1000 |
|
value: 0.097 |
|
- type: precision_at_3 |
|
value: 21.532999999999998 |
|
- type: precision_at_5 |
|
value: 14.16 |
|
- type: recall_at_1 |
|
value: 47.699999999999996 |
|
- type: recall_at_10 |
|
value: 78.0 |
|
- type: recall_at_100 |
|
value: 91.9 |
|
- type: recall_at_1000 |
|
value: 97.3 |
|
- type: recall_at_3 |
|
value: 64.60000000000001 |
|
- type: recall_at_5 |
|
value: 70.8 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB IFlyTek |
|
revision: 421605374b29664c5fc098418fe20ada9bd55f8a |
|
split: validation |
|
type: C-MTEB/IFlyTek-classification |
|
metrics: |
|
- type: accuracy |
|
value: 44.84801846864178 |
|
- type: f1 |
|
value: 37.47347897956339 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB JDReview |
|
revision: b7c64bd89eb87f8ded463478346f76731f07bf8b |
|
split: test |
|
type: C-MTEB/JDReview-classification |
|
metrics: |
|
- type: accuracy |
|
value: 85.81613508442777 |
|
- type: ap |
|
value: 52.68244615477374 |
|
- type: f1 |
|
value: 80.0445640948843 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB LCQMC |
|
revision: 17f9b096f80380fce5ed12a9be8be7784b337daf |
|
split: test |
|
type: C-MTEB/LCQMC |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 69.57786502217138 |
|
- type: cos_sim_spearman |
|
value: 75.39106054489906 |
|
- type: euclidean_pearson |
|
value: 73.72082954602402 |
|
- type: euclidean_spearman |
|
value: 75.14421475913619 |
|
- type: manhattan_pearson |
|
value: 73.62463076633642 |
|
- type: manhattan_spearman |
|
value: 75.01301565104112 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB MMarcoReranking |
|
revision: None |
|
split: dev |
|
type: C-MTEB/Mmarco-reranking |
|
metrics: |
|
- type: map |
|
value: 29.143797057999134 |
|
- type: mrr |
|
value: 28.08174603174603 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB MMarcoRetrieval |
|
revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 |
|
split: dev |
|
type: C-MTEB/MMarcoRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 70.492 |
|
- type: map_at_10 |
|
value: 79.501 |
|
- type: map_at_100 |
|
value: 79.728 |
|
- type: map_at_1000 |
|
value: 79.735 |
|
- type: map_at_3 |
|
value: 77.77 |
|
- type: map_at_5 |
|
value: 78.851 |
|
- type: mrr_at_1 |
|
value: 72.822 |
|
- type: mrr_at_10 |
|
value: 80.001 |
|
- type: mrr_at_100 |
|
value: 80.19 |
|
- type: mrr_at_1000 |
|
value: 80.197 |
|
- type: mrr_at_3 |
|
value: 78.484 |
|
- type: mrr_at_5 |
|
value: 79.42099999999999 |
|
- type: ndcg_at_1 |
|
value: 72.822 |
|
- type: ndcg_at_10 |
|
value: 83.013 |
|
- type: ndcg_at_100 |
|
value: 84.013 |
|
- type: ndcg_at_1000 |
|
value: 84.20400000000001 |
|
- type: ndcg_at_3 |
|
value: 79.728 |
|
- type: ndcg_at_5 |
|
value: 81.542 |
|
- type: precision_at_1 |
|
value: 72.822 |
|
- type: precision_at_10 |
|
value: 9.917 |
|
- type: precision_at_100 |
|
value: 1.042 |
|
- type: precision_at_1000 |
|
value: 0.106 |
|
- type: precision_at_3 |
|
value: 29.847 |
|
- type: precision_at_5 |
|
value: 18.871 |
|
- type: recall_at_1 |
|
value: 70.492 |
|
- type: recall_at_10 |
|
value: 93.325 |
|
- type: recall_at_100 |
|
value: 97.822 |
|
- type: recall_at_1000 |
|
value: 99.319 |
|
- type: recall_at_3 |
|
value: 84.636 |
|
- type: recall_at_5 |
|
value: 88.93100000000001 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 76.88298587760592 |
|
- type: f1 |
|
value: 73.89001762017176 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: zh-CN |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 80.76328177538669 |
|
- type: f1 |
|
value: 80.24718532423358 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB MedicalRetrieval |
|
revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 |
|
split: dev |
|
type: C-MTEB/MedicalRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 49.6 |
|
- type: map_at_10 |
|
value: 55.620999999999995 |
|
- type: map_at_100 |
|
value: 56.204 |
|
- type: map_at_1000 |
|
value: 56.251 |
|
- type: map_at_3 |
|
value: 54.132999999999996 |
|
- type: map_at_5 |
|
value: 54.933 |
|
- type: mrr_at_1 |
|
value: 49.7 |
|
- type: mrr_at_10 |
|
value: 55.67100000000001 |
|
- type: mrr_at_100 |
|
value: 56.254000000000005 |
|
- type: mrr_at_1000 |
|
value: 56.301 |
|
- type: mrr_at_3 |
|
value: 54.18300000000001 |
|
- type: mrr_at_5 |
|
value: 54.983000000000004 |
|
- type: ndcg_at_1 |
|
value: 49.6 |
|
- type: ndcg_at_10 |
|
value: 58.645 |
|
- type: ndcg_at_100 |
|
value: 61.789 |
|
- type: ndcg_at_1000 |
|
value: 63.219 |
|
- type: ndcg_at_3 |
|
value: 55.567 |
|
- type: ndcg_at_5 |
|
value: 57.008 |
|
- type: precision_at_1 |
|
value: 49.6 |
|
- type: precision_at_10 |
|
value: 6.819999999999999 |
|
- type: precision_at_100 |
|
value: 0.836 |
|
- type: precision_at_1000 |
|
value: 0.095 |
|
- type: precision_at_3 |
|
value: 19.900000000000002 |
|
- type: precision_at_5 |
|
value: 12.64 |
|
- type: recall_at_1 |
|
value: 49.6 |
|
- type: recall_at_10 |
|
value: 68.2 |
|
- type: recall_at_100 |
|
value: 83.6 |
|
- type: recall_at_1000 |
|
value: 95.3 |
|
- type: recall_at_3 |
|
value: 59.699999999999996 |
|
- type: recall_at_5 |
|
value: 63.2 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB MultilingualSentiment |
|
revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a |
|
split: validation |
|
type: C-MTEB/MultilingualSentiment-classification |
|
metrics: |
|
- type: accuracy |
|
value: 74.45666666666666 |
|
- type: f1 |
|
value: 74.32582402190089 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB Ocnli |
|
revision: 66e76a618a34d6d565d5538088562851e6daa7ec |
|
split: validation |
|
type: C-MTEB/OCNLI |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 80.67135896047645 |
|
- type: cos_sim_ap |
|
value: 87.60421240712051 |
|
- type: cos_sim_f1 |
|
value: 82.1304131408661 |
|
- type: cos_sim_precision |
|
value: 77.68361581920904 |
|
- type: cos_sim_recall |
|
value: 87.11721224920802 |
|
- type: dot_accuracy |
|
value: 79.04710341093666 |
|
- type: dot_ap |
|
value: 85.6370059719336 |
|
- type: dot_f1 |
|
value: 80.763723150358 |
|
- type: dot_precision |
|
value: 73.69337979094077 |
|
- type: dot_recall |
|
value: 89.33474128827878 |
|
- type: euclidean_accuracy |
|
value: 81.05035192203573 |
|
- type: euclidean_ap |
|
value: 87.7880240053663 |
|
- type: euclidean_f1 |
|
value: 82.50244379276637 |
|
- type: euclidean_precision |
|
value: 76.7970882620564 |
|
- type: euclidean_recall |
|
value: 89.1235480464625 |
|
- type: manhattan_accuracy |
|
value: 80.61721710882512 |
|
- type: manhattan_ap |
|
value: 87.43568120591175 |
|
- type: manhattan_f1 |
|
value: 81.89526184538653 |
|
- type: manhattan_precision |
|
value: 77.5992438563327 |
|
- type: manhattan_recall |
|
value: 86.6948257655755 |
|
- type: max_accuracy |
|
value: 81.05035192203573 |
|
- type: max_ap |
|
value: 87.7880240053663 |
|
- type: max_f1 |
|
value: 82.50244379276637 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB OnlineShopping |
|
revision: e610f2ebd179a8fda30ae534c3878750a96db120 |
|
split: test |
|
type: C-MTEB/OnlineShopping-classification |
|
metrics: |
|
- type: accuracy |
|
value: 93.5 |
|
- type: ap |
|
value: 91.31357903446782 |
|
- type: f1 |
|
value: 93.48088994006616 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB PAWSX |
|
revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 |
|
split: test |
|
type: C-MTEB/PAWSX |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.93293453538077 |
|
- type: cos_sim_spearman |
|
value: 42.45972506308574 |
|
- type: euclidean_pearson |
|
value: 42.34945133152159 |
|
- type: euclidean_spearman |
|
value: 42.331610303674644 |
|
- type: manhattan_pearson |
|
value: 42.31455070249498 |
|
- type: manhattan_spearman |
|
value: 42.19887982891834 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB QBQTC |
|
revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 |
|
split: test |
|
type: C-MTEB/QBQTC |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 33.683290790043785 |
|
- type: cos_sim_spearman |
|
value: 35.149171171202994 |
|
- type: euclidean_pearson |
|
value: 32.33806561267862 |
|
- type: euclidean_spearman |
|
value: 34.483576387347966 |
|
- type: manhattan_pearson |
|
value: 32.47629754599608 |
|
- type: manhattan_spearman |
|
value: 34.66434471867615 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: zh |
|
name: MTEB STS22 (zh) |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 66.46322760516104 |
|
- type: cos_sim_spearman |
|
value: 67.398478319726 |
|
- type: euclidean_pearson |
|
value: 64.7223480293625 |
|
- type: euclidean_spearman |
|
value: 66.83118568812951 |
|
- type: manhattan_pearson |
|
value: 64.88440039828305 |
|
- type: manhattan_spearman |
|
value: 66.80429458952257 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB STSB |
|
revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 |
|
split: test |
|
type: C-MTEB/STSB |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.08991383232105 |
|
- type: cos_sim_spearman |
|
value: 79.39715677296854 |
|
- type: euclidean_pearson |
|
value: 78.63201279320496 |
|
- type: euclidean_spearman |
|
value: 79.40262660785731 |
|
- type: manhattan_pearson |
|
value: 78.98138363146906 |
|
- type: manhattan_spearman |
|
value: 79.79968413014194 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB T2Reranking |
|
revision: 76631901a18387f85eaa53e5450019b87ad58ef9 |
|
split: dev |
|
type: C-MTEB/T2Reranking |
|
metrics: |
|
- type: map |
|
value: 67.43289278789972 |
|
- type: mrr |
|
value: 77.53012460908535 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB T2Retrieval |
|
revision: 8731a845f1bf500a4f111cf1070785c793d10e64 |
|
split: dev |
|
type: C-MTEB/T2Retrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 27.733999999999998 |
|
- type: map_at_10 |
|
value: 78.24799999999999 |
|
- type: map_at_100 |
|
value: 81.765 |
|
- type: map_at_1000 |
|
value: 81.824 |
|
- type: map_at_3 |
|
value: 54.92 |
|
- type: map_at_5 |
|
value: 67.61399999999999 |
|
- type: mrr_at_1 |
|
value: 90.527 |
|
- type: mrr_at_10 |
|
value: 92.843 |
|
- type: mrr_at_100 |
|
value: 92.927 |
|
- type: mrr_at_1000 |
|
value: 92.93 |
|
- type: mrr_at_3 |
|
value: 92.45100000000001 |
|
- type: mrr_at_5 |
|
value: 92.693 |
|
- type: ndcg_at_1 |
|
value: 90.527 |
|
- type: ndcg_at_10 |
|
value: 85.466 |
|
- type: ndcg_at_100 |
|
value: 88.846 |
|
- type: ndcg_at_1000 |
|
value: 89.415 |
|
- type: ndcg_at_3 |
|
value: 86.768 |
|
- type: ndcg_at_5 |
|
value: 85.46000000000001 |
|
- type: precision_at_1 |
|
value: 90.527 |
|
- type: precision_at_10 |
|
value: 42.488 |
|
- type: precision_at_100 |
|
value: 5.024 |
|
- type: precision_at_1000 |
|
value: 0.516 |
|
- type: precision_at_3 |
|
value: 75.907 |
|
- type: precision_at_5 |
|
value: 63.727000000000004 |
|
- type: recall_at_1 |
|
value: 27.733999999999998 |
|
- type: recall_at_10 |
|
value: 84.346 |
|
- type: recall_at_100 |
|
value: 95.536 |
|
- type: recall_at_1000 |
|
value: 98.42999999999999 |
|
- type: recall_at_3 |
|
value: 56.455 |
|
- type: recall_at_5 |
|
value: 70.755 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB TNews |
|
revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 |
|
split: validation |
|
type: C-MTEB/TNews-classification |
|
metrics: |
|
- type: accuracy |
|
value: 49.952000000000005 |
|
- type: f1 |
|
value: 48.264617195258054 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB ThuNewsClusteringP2P |
|
revision: 5798586b105c0434e4f0fe5e767abe619442cf93 |
|
split: test |
|
type: C-MTEB/ThuNewsClusteringP2P |
|
metrics: |
|
- type: v_measure |
|
value: 68.23769904483508 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB ThuNewsClusteringS2S |
|
revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d |
|
split: test |
|
type: C-MTEB/ThuNewsClusteringS2S |
|
metrics: |
|
- type: v_measure |
|
value: 62.50294403136556 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB VideoRetrieval |
|
revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 |
|
split: dev |
|
type: C-MTEB/VideoRetrieval |
|
metrics: |
|
- type: map_at_1 |
|
value: 54.0 |
|
- type: map_at_10 |
|
value: 63.668 |
|
- type: map_at_100 |
|
value: 64.217 |
|
- type: map_at_1000 |
|
value: 64.23100000000001 |
|
- type: map_at_3 |
|
value: 61.7 |
|
- type: map_at_5 |
|
value: 62.870000000000005 |
|
- type: mrr_at_1 |
|
value: 54.0 |
|
- type: mrr_at_10 |
|
value: 63.668 |
|
- type: mrr_at_100 |
|
value: 64.217 |
|
- type: mrr_at_1000 |
|
value: 64.23100000000001 |
|
- type: mrr_at_3 |
|
value: 61.7 |
|
- type: mrr_at_5 |
|
value: 62.870000000000005 |
|
- type: ndcg_at_1 |
|
value: 54.0 |
|
- type: ndcg_at_10 |
|
value: 68.11399999999999 |
|
- type: ndcg_at_100 |
|
value: 70.723 |
|
- type: ndcg_at_1000 |
|
value: 71.123 |
|
- type: ndcg_at_3 |
|
value: 64.074 |
|
- type: ndcg_at_5 |
|
value: 66.178 |
|
- type: precision_at_1 |
|
value: 54.0 |
|
- type: precision_at_10 |
|
value: 8.200000000000001 |
|
- type: precision_at_100 |
|
value: 0.941 |
|
- type: precision_at_1000 |
|
value: 0.097 |
|
- type: precision_at_3 |
|
value: 23.633000000000003 |
|
- type: precision_at_5 |
|
value: 15.2 |
|
- type: recall_at_1 |
|
value: 54.0 |
|
- type: recall_at_10 |
|
value: 82.0 |
|
- type: recall_at_100 |
|
value: 94.1 |
|
- type: recall_at_1000 |
|
value: 97.3 |
|
- type: recall_at_3 |
|
value: 70.89999999999999 |
|
- type: recall_at_5 |
|
value: 76.0 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB Waimai |
|
revision: 339287def212450dcaa9df8c22bf93e9980c7023 |
|
split: test |
|
type: C-MTEB/waimai-classification |
|
metrics: |
|
- type: accuracy |
|
value: 86.63000000000001 |
|
- type: ap |
|
value: 69.99457882599567 |
|
- type: f1 |
|
value: 85.07735617998541 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB 8TagsClustering |
|
revision: None |
|
split: test |
|
type: PL-MTEB/8tags-clustering |
|
metrics: |
|
- type: v_measure |
|
value: 44.594104491193555 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB AllegroReviews |
|
revision: None |
|
split: test |
|
type: PL-MTEB/allegro-reviews |
|
metrics: |
|
- type: accuracy |
|
value: 63.97614314115309 |
|
- type: f1 |
|
value: 52.15634261679283 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB ArguAna-PL |
|
revision: 63fc86750af76253e8c760fc9e534bbf24d260a2 |
|
split: test |
|
type: clarin-knext/arguana-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 32.646 |
|
- type: map_at_10 |
|
value: 47.963 |
|
- type: map_at_100 |
|
value: 48.789 |
|
- type: map_at_1000 |
|
value: 48.797000000000004 |
|
- type: map_at_3 |
|
value: 43.196 |
|
- type: map_at_5 |
|
value: 46.016 |
|
- type: mrr_at_1 |
|
value: 33.073 |
|
- type: mrr_at_10 |
|
value: 48.126000000000005 |
|
- type: mrr_at_100 |
|
value: 48.946 |
|
- type: mrr_at_1000 |
|
value: 48.953 |
|
- type: mrr_at_3 |
|
value: 43.374 |
|
- type: mrr_at_5 |
|
value: 46.147 |
|
- type: ndcg_at_1 |
|
value: 32.646 |
|
- type: ndcg_at_10 |
|
value: 56.481 |
|
- type: ndcg_at_100 |
|
value: 59.922 |
|
- type: ndcg_at_1000 |
|
value: 60.07 |
|
- type: ndcg_at_3 |
|
value: 46.675 |
|
- type: ndcg_at_5 |
|
value: 51.76500000000001 |
|
- type: precision_at_1 |
|
value: 32.646 |
|
- type: precision_at_10 |
|
value: 8.371 |
|
- type: precision_at_100 |
|
value: 0.9860000000000001 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 18.919 |
|
- type: precision_at_5 |
|
value: 13.825999999999999 |
|
- type: recall_at_1 |
|
value: 32.646 |
|
- type: recall_at_10 |
|
value: 83.71300000000001 |
|
- type: recall_at_100 |
|
value: 98.578 |
|
- type: recall_at_1000 |
|
value: 99.644 |
|
- type: recall_at_3 |
|
value: 56.757000000000005 |
|
- type: recall_at_5 |
|
value: 69.132 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB CBD |
|
revision: None |
|
split: test |
|
type: PL-MTEB/cbd |
|
metrics: |
|
- type: accuracy |
|
value: 68.56 |
|
- type: ap |
|
value: 23.310493680488513 |
|
- type: f1 |
|
value: 58.85369533105693 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB CDSC-E |
|
revision: None |
|
split: test |
|
type: PL-MTEB/cdsce-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 88.5 |
|
- type: cos_sim_ap |
|
value: 72.42140924378361 |
|
- type: cos_sim_f1 |
|
value: 66.0919540229885 |
|
- type: cos_sim_precision |
|
value: 72.78481012658227 |
|
- type: cos_sim_recall |
|
value: 60.526315789473685 |
|
- type: dot_accuracy |
|
value: 88.5 |
|
- type: dot_ap |
|
value: 72.42140924378361 |
|
- type: dot_f1 |
|
value: 66.0919540229885 |
|
- type: dot_precision |
|
value: 72.78481012658227 |
|
- type: dot_recall |
|
value: 60.526315789473685 |
|
- type: euclidean_accuracy |
|
value: 88.5 |
|
- type: euclidean_ap |
|
value: 72.42140924378361 |
|
- type: euclidean_f1 |
|
value: 66.0919540229885 |
|
- type: euclidean_precision |
|
value: 72.78481012658227 |
|
- type: euclidean_recall |
|
value: 60.526315789473685 |
|
- type: manhattan_accuracy |
|
value: 88.5 |
|
- type: manhattan_ap |
|
value: 72.49745515311696 |
|
- type: manhattan_f1 |
|
value: 66.0968660968661 |
|
- type: manhattan_precision |
|
value: 72.04968944099379 |
|
- type: manhattan_recall |
|
value: 61.05263157894737 |
|
- type: max_accuracy |
|
value: 88.5 |
|
- type: max_ap |
|
value: 72.49745515311696 |
|
- type: max_f1 |
|
value: 66.0968660968661 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB CDSC-R |
|
revision: None |
|
split: test |
|
type: PL-MTEB/cdscr-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 90.32269765590145 |
|
- type: cos_sim_spearman |
|
value: 89.73666311491672 |
|
- type: euclidean_pearson |
|
value: 88.2933868516544 |
|
- type: euclidean_spearman |
|
value: 89.73666311491672 |
|
- type: manhattan_pearson |
|
value: 88.33474590219448 |
|
- type: manhattan_spearman |
|
value: 89.8548364866583 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB DBPedia-PL |
|
revision: 76afe41d9af165cc40999fcaa92312b8b012064a |
|
split: test |
|
type: clarin-knext/dbpedia-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 7.632999999999999 |
|
- type: map_at_10 |
|
value: 16.426 |
|
- type: map_at_100 |
|
value: 22.651 |
|
- type: map_at_1000 |
|
value: 24.372 |
|
- type: map_at_3 |
|
value: 11.706 |
|
- type: map_at_5 |
|
value: 13.529 |
|
- type: mrr_at_1 |
|
value: 60.75000000000001 |
|
- type: mrr_at_10 |
|
value: 68.613 |
|
- type: mrr_at_100 |
|
value: 69.001 |
|
- type: mrr_at_1000 |
|
value: 69.021 |
|
- type: mrr_at_3 |
|
value: 67.0 |
|
- type: mrr_at_5 |
|
value: 67.925 |
|
- type: ndcg_at_1 |
|
value: 49.875 |
|
- type: ndcg_at_10 |
|
value: 36.978 |
|
- type: ndcg_at_100 |
|
value: 40.031 |
|
- type: ndcg_at_1000 |
|
value: 47.566 |
|
- type: ndcg_at_3 |
|
value: 41.148 |
|
- type: ndcg_at_5 |
|
value: 38.702 |
|
- type: precision_at_1 |
|
value: 60.75000000000001 |
|
- type: precision_at_10 |
|
value: 29.7 |
|
- type: precision_at_100 |
|
value: 9.278 |
|
- type: precision_at_1000 |
|
value: 2.099 |
|
- type: precision_at_3 |
|
value: 44.0 |
|
- type: precision_at_5 |
|
value: 37.6 |
|
- type: recall_at_1 |
|
value: 7.632999999999999 |
|
- type: recall_at_10 |
|
value: 22.040000000000003 |
|
- type: recall_at_100 |
|
value: 44.024 |
|
- type: recall_at_1000 |
|
value: 67.848 |
|
- type: recall_at_3 |
|
value: 13.093 |
|
- type: recall_at_5 |
|
value: 15.973 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB FiQA-PL |
|
revision: 2e535829717f8bf9dc829b7f911cc5bbd4e6608e |
|
split: test |
|
type: clarin-knext/fiqa-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 15.473 |
|
- type: map_at_10 |
|
value: 24.579 |
|
- type: map_at_100 |
|
value: 26.387 |
|
- type: map_at_1000 |
|
value: 26.57 |
|
- type: map_at_3 |
|
value: 21.278 |
|
- type: map_at_5 |
|
value: 23.179 |
|
- type: mrr_at_1 |
|
value: 30.709999999999997 |
|
- type: mrr_at_10 |
|
value: 38.994 |
|
- type: mrr_at_100 |
|
value: 39.993 |
|
- type: mrr_at_1000 |
|
value: 40.044999999999995 |
|
- type: mrr_at_3 |
|
value: 36.342999999999996 |
|
- type: mrr_at_5 |
|
value: 37.846999999999994 |
|
- type: ndcg_at_1 |
|
value: 30.709999999999997 |
|
- type: ndcg_at_10 |
|
value: 31.608999999999998 |
|
- type: ndcg_at_100 |
|
value: 38.807 |
|
- type: ndcg_at_1000 |
|
value: 42.208 |
|
- type: ndcg_at_3 |
|
value: 28.086 |
|
- type: ndcg_at_5 |
|
value: 29.323 |
|
- type: precision_at_1 |
|
value: 30.709999999999997 |
|
- type: precision_at_10 |
|
value: 8.688 |
|
- type: precision_at_100 |
|
value: 1.608 |
|
- type: precision_at_1000 |
|
value: 0.22100000000000003 |
|
- type: precision_at_3 |
|
value: 18.724 |
|
- type: precision_at_5 |
|
value: 13.950999999999999 |
|
- type: recall_at_1 |
|
value: 15.473 |
|
- type: recall_at_10 |
|
value: 38.361000000000004 |
|
- type: recall_at_100 |
|
value: 65.2 |
|
- type: recall_at_1000 |
|
value: 85.789 |
|
- type: recall_at_3 |
|
value: 25.401 |
|
- type: recall_at_5 |
|
value: 30.875999999999998 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB HotpotQA-PL |
|
revision: a0bd479ac97b4ccb5bd6ce320c415d0bb4beb907 |
|
split: test |
|
type: clarin-knext/hotpotqa-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.096000000000004 |
|
- type: map_at_10 |
|
value: 51.44499999999999 |
|
- type: map_at_100 |
|
value: 52.325 |
|
- type: map_at_1000 |
|
value: 52.397000000000006 |
|
- type: map_at_3 |
|
value: 48.626999999999995 |
|
- type: map_at_5 |
|
value: 50.342 |
|
- type: mrr_at_1 |
|
value: 76.19200000000001 |
|
- type: mrr_at_10 |
|
value: 81.191 |
|
- type: mrr_at_100 |
|
value: 81.431 |
|
- type: mrr_at_1000 |
|
value: 81.443 |
|
- type: mrr_at_3 |
|
value: 80.30199999999999 |
|
- type: mrr_at_5 |
|
value: 80.85900000000001 |
|
- type: ndcg_at_1 |
|
value: 76.19200000000001 |
|
- type: ndcg_at_10 |
|
value: 60.9 |
|
- type: ndcg_at_100 |
|
value: 64.14699999999999 |
|
- type: ndcg_at_1000 |
|
value: 65.647 |
|
- type: ndcg_at_3 |
|
value: 56.818000000000005 |
|
- type: ndcg_at_5 |
|
value: 59.019999999999996 |
|
- type: precision_at_1 |
|
value: 76.19200000000001 |
|
- type: precision_at_10 |
|
value: 12.203 |
|
- type: precision_at_100 |
|
value: 1.478 |
|
- type: precision_at_1000 |
|
value: 0.168 |
|
- type: precision_at_3 |
|
value: 34.616 |
|
- type: precision_at_5 |
|
value: 22.515 |
|
- type: recall_at_1 |
|
value: 38.096000000000004 |
|
- type: recall_at_10 |
|
value: 61.013 |
|
- type: recall_at_100 |
|
value: 73.90299999999999 |
|
- type: recall_at_1000 |
|
value: 83.91 |
|
- type: recall_at_3 |
|
value: 51.92400000000001 |
|
- type: recall_at_5 |
|
value: 56.286 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB MSMARCO-PL |
|
revision: 8634c07806d5cce3a6138e260e59b81760a0a640 |
|
split: test |
|
type: clarin-knext/msmarco-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 1.548 |
|
- type: map_at_10 |
|
value: 11.049000000000001 |
|
- type: map_at_100 |
|
value: 28.874 |
|
- type: map_at_1000 |
|
value: 34.931 |
|
- type: map_at_3 |
|
value: 4.162 |
|
- type: map_at_5 |
|
value: 6.396 |
|
- type: mrr_at_1 |
|
value: 90.69800000000001 |
|
- type: mrr_at_10 |
|
value: 92.093 |
|
- type: mrr_at_100 |
|
value: 92.345 |
|
- type: mrr_at_1000 |
|
value: 92.345 |
|
- type: mrr_at_3 |
|
value: 91.86 |
|
- type: mrr_at_5 |
|
value: 91.86 |
|
- type: ndcg_at_1 |
|
value: 74.031 |
|
- type: ndcg_at_10 |
|
value: 63.978 |
|
- type: ndcg_at_100 |
|
value: 53.101 |
|
- type: ndcg_at_1000 |
|
value: 60.675999999999995 |
|
- type: ndcg_at_3 |
|
value: 71.421 |
|
- type: ndcg_at_5 |
|
value: 68.098 |
|
- type: precision_at_1 |
|
value: 90.69800000000001 |
|
- type: precision_at_10 |
|
value: 71.86 |
|
- type: precision_at_100 |
|
value: 31.395 |
|
- type: precision_at_1000 |
|
value: 5.981 |
|
- type: precision_at_3 |
|
value: 84.49600000000001 |
|
- type: precision_at_5 |
|
value: 79.07 |
|
- type: recall_at_1 |
|
value: 1.548 |
|
- type: recall_at_10 |
|
value: 12.149000000000001 |
|
- type: recall_at_100 |
|
value: 40.794999999999995 |
|
- type: recall_at_1000 |
|
value: 67.974 |
|
- type: recall_at_3 |
|
value: 4.244 |
|
- type: recall_at_5 |
|
value: 6.608 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: pl |
|
name: MTEB MassiveIntentClassification (pl) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 73.55413584398119 |
|
- type: f1 |
|
value: 69.65610882318181 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: pl |
|
name: MTEB MassiveScenarioClassification (pl) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 76.37188971082716 |
|
- type: f1 |
|
value: 75.64847309941361 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB NFCorpus-PL |
|
revision: 9a6f9567fda928260afed2de480d79c98bf0bec0 |
|
split: test |
|
type: clarin-knext/nfcorpus-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 4.919 |
|
- type: map_at_10 |
|
value: 10.834000000000001 |
|
- type: map_at_100 |
|
value: 13.38 |
|
- type: map_at_1000 |
|
value: 14.581 |
|
- type: map_at_3 |
|
value: 8.198 |
|
- type: map_at_5 |
|
value: 9.428 |
|
- type: mrr_at_1 |
|
value: 41.176 |
|
- type: mrr_at_10 |
|
value: 50.083 |
|
- type: mrr_at_100 |
|
value: 50.559 |
|
- type: mrr_at_1000 |
|
value: 50.604000000000006 |
|
- type: mrr_at_3 |
|
value: 47.936 |
|
- type: mrr_at_5 |
|
value: 49.407000000000004 |
|
- type: ndcg_at_1 |
|
value: 39.628 |
|
- type: ndcg_at_10 |
|
value: 30.098000000000003 |
|
- type: ndcg_at_100 |
|
value: 27.061 |
|
- type: ndcg_at_1000 |
|
value: 35.94 |
|
- type: ndcg_at_3 |
|
value: 35.135 |
|
- type: ndcg_at_5 |
|
value: 33.335 |
|
- type: precision_at_1 |
|
value: 41.176 |
|
- type: precision_at_10 |
|
value: 22.259999999999998 |
|
- type: precision_at_100 |
|
value: 6.712 |
|
- type: precision_at_1000 |
|
value: 1.9060000000000001 |
|
- type: precision_at_3 |
|
value: 33.23 |
|
- type: precision_at_5 |
|
value: 29.04 |
|
- type: recall_at_1 |
|
value: 4.919 |
|
- type: recall_at_10 |
|
value: 14.196 |
|
- type: recall_at_100 |
|
value: 26.948 |
|
- type: recall_at_1000 |
|
value: 59.211000000000006 |
|
- type: recall_at_3 |
|
value: 9.44 |
|
- type: recall_at_5 |
|
value: 11.569 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB NQ-PL |
|
revision: f171245712cf85dd4700b06bef18001578d0ca8d |
|
split: test |
|
type: clarin-knext/nq-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.35 |
|
- type: map_at_10 |
|
value: 37.884 |
|
- type: map_at_100 |
|
value: 38.955 |
|
- type: map_at_1000 |
|
value: 39.007999999999996 |
|
- type: map_at_3 |
|
value: 34.239999999999995 |
|
- type: map_at_5 |
|
value: 36.398 |
|
- type: mrr_at_1 |
|
value: 28.737000000000002 |
|
- type: mrr_at_10 |
|
value: 39.973 |
|
- type: mrr_at_100 |
|
value: 40.844 |
|
- type: mrr_at_1000 |
|
value: 40.885 |
|
- type: mrr_at_3 |
|
value: 36.901 |
|
- type: mrr_at_5 |
|
value: 38.721 |
|
- type: ndcg_at_1 |
|
value: 28.708 |
|
- type: ndcg_at_10 |
|
value: 44.204 |
|
- type: ndcg_at_100 |
|
value: 48.978 |
|
- type: ndcg_at_1000 |
|
value: 50.33 |
|
- type: ndcg_at_3 |
|
value: 37.36 |
|
- type: ndcg_at_5 |
|
value: 40.912 |
|
- type: precision_at_1 |
|
value: 28.708 |
|
- type: precision_at_10 |
|
value: 7.367 |
|
- type: precision_at_100 |
|
value: 1.0030000000000001 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 17.034 |
|
- type: precision_at_5 |
|
value: 12.293999999999999 |
|
- type: recall_at_1 |
|
value: 25.35 |
|
- type: recall_at_10 |
|
value: 61.411 |
|
- type: recall_at_100 |
|
value: 82.599 |
|
- type: recall_at_1000 |
|
value: 92.903 |
|
- type: recall_at_3 |
|
value: 43.728 |
|
- type: recall_at_5 |
|
value: 51.854 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB PAC |
|
revision: None |
|
split: test |
|
type: laugustyniak/abusive-clauses-pl |
|
metrics: |
|
- type: accuracy |
|
value: 69.04141326382856 |
|
- type: ap |
|
value: 77.49422763833996 |
|
- type: f1 |
|
value: 66.73472657783407 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB PPC |
|
revision: None |
|
split: test |
|
type: PL-MTEB/ppc-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 81.0 |
|
- type: cos_sim_ap |
|
value: 91.47194213011349 |
|
- type: cos_sim_f1 |
|
value: 84.73767885532592 |
|
- type: cos_sim_precision |
|
value: 81.49847094801224 |
|
- type: cos_sim_recall |
|
value: 88.24503311258279 |
|
- type: dot_accuracy |
|
value: 81.0 |
|
- type: dot_ap |
|
value: 91.47194213011349 |
|
- type: dot_f1 |
|
value: 84.73767885532592 |
|
- type: dot_precision |
|
value: 81.49847094801224 |
|
- type: dot_recall |
|
value: 88.24503311258279 |
|
- type: euclidean_accuracy |
|
value: 81.0 |
|
- type: euclidean_ap |
|
value: 91.47194213011349 |
|
- type: euclidean_f1 |
|
value: 84.73767885532592 |
|
- type: euclidean_precision |
|
value: 81.49847094801224 |
|
- type: euclidean_recall |
|
value: 88.24503311258279 |
|
- type: manhattan_accuracy |
|
value: 81.0 |
|
- type: manhattan_ap |
|
value: 91.46464475050571 |
|
- type: manhattan_f1 |
|
value: 84.48687350835321 |
|
- type: manhattan_precision |
|
value: 81.31699846860643 |
|
- type: manhattan_recall |
|
value: 87.91390728476821 |
|
- type: max_accuracy |
|
value: 81.0 |
|
- type: max_ap |
|
value: 91.47194213011349 |
|
- type: max_f1 |
|
value: 84.73767885532592 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB PSC |
|
revision: None |
|
split: test |
|
type: PL-MTEB/psc-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 97.6808905380334 |
|
- type: cos_sim_ap |
|
value: 99.27948611836348 |
|
- type: cos_sim_f1 |
|
value: 96.15975422427034 |
|
- type: cos_sim_precision |
|
value: 96.90402476780186 |
|
- type: cos_sim_recall |
|
value: 95.42682926829268 |
|
- type: dot_accuracy |
|
value: 97.6808905380334 |
|
- type: dot_ap |
|
value: 99.2794861183635 |
|
- type: dot_f1 |
|
value: 96.15975422427034 |
|
- type: dot_precision |
|
value: 96.90402476780186 |
|
- type: dot_recall |
|
value: 95.42682926829268 |
|
- type: euclidean_accuracy |
|
value: 97.6808905380334 |
|
- type: euclidean_ap |
|
value: 99.2794861183635 |
|
- type: euclidean_f1 |
|
value: 96.15975422427034 |
|
- type: euclidean_precision |
|
value: 96.90402476780186 |
|
- type: euclidean_recall |
|
value: 95.42682926829268 |
|
- type: manhattan_accuracy |
|
value: 97.6808905380334 |
|
- type: manhattan_ap |
|
value: 99.28715055268721 |
|
- type: manhattan_f1 |
|
value: 96.14791987673343 |
|
- type: manhattan_precision |
|
value: 97.19626168224299 |
|
- type: manhattan_recall |
|
value: 95.1219512195122 |
|
- type: max_accuracy |
|
value: 97.6808905380334 |
|
- type: max_ap |
|
value: 99.28715055268721 |
|
- type: max_f1 |
|
value: 96.15975422427034 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB PolEmo2.0-IN |
|
revision: None |
|
split: test |
|
type: PL-MTEB/polemo2_in |
|
metrics: |
|
- type: accuracy |
|
value: 86.16343490304708 |
|
- type: f1 |
|
value: 83.3442579486744 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB PolEmo2.0-OUT |
|
revision: None |
|
split: test |
|
type: PL-MTEB/polemo2_out |
|
metrics: |
|
- type: accuracy |
|
value: 68.40080971659918 |
|
- type: f1 |
|
value: 53.13720751142237 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB Quora-PL |
|
revision: 0be27e93455051e531182b85e85e425aba12e9d4 |
|
split: test |
|
type: clarin-knext/quora-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 63.322 |
|
- type: map_at_10 |
|
value: 76.847 |
|
- type: map_at_100 |
|
value: 77.616 |
|
- type: map_at_1000 |
|
value: 77.644 |
|
- type: map_at_3 |
|
value: 73.624 |
|
- type: map_at_5 |
|
value: 75.603 |
|
- type: mrr_at_1 |
|
value: 72.88 |
|
- type: mrr_at_10 |
|
value: 80.376 |
|
- type: mrr_at_100 |
|
value: 80.604 |
|
- type: mrr_at_1000 |
|
value: 80.61 |
|
- type: mrr_at_3 |
|
value: 78.92 |
|
- type: mrr_at_5 |
|
value: 79.869 |
|
- type: ndcg_at_1 |
|
value: 72.89999999999999 |
|
- type: ndcg_at_10 |
|
value: 81.43 |
|
- type: ndcg_at_100 |
|
value: 83.394 |
|
- type: ndcg_at_1000 |
|
value: 83.685 |
|
- type: ndcg_at_3 |
|
value: 77.62599999999999 |
|
- type: ndcg_at_5 |
|
value: 79.656 |
|
- type: precision_at_1 |
|
value: 72.89999999999999 |
|
- type: precision_at_10 |
|
value: 12.548 |
|
- type: precision_at_100 |
|
value: 1.4869999999999999 |
|
- type: precision_at_1000 |
|
value: 0.155 |
|
- type: precision_at_3 |
|
value: 34.027 |
|
- type: precision_at_5 |
|
value: 22.654 |
|
- type: recall_at_1 |
|
value: 63.322 |
|
- type: recall_at_10 |
|
value: 90.664 |
|
- type: recall_at_100 |
|
value: 97.974 |
|
- type: recall_at_1000 |
|
value: 99.636 |
|
- type: recall_at_3 |
|
value: 80.067 |
|
- type: recall_at_5 |
|
value: 85.526 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SCIDOCS-PL |
|
revision: 45452b03f05560207ef19149545f168e596c9337 |
|
split: test |
|
type: clarin-knext/scidocs-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 3.95 |
|
- type: map_at_10 |
|
value: 9.658999999999999 |
|
- type: map_at_100 |
|
value: 11.384 |
|
- type: map_at_1000 |
|
value: 11.677 |
|
- type: map_at_3 |
|
value: 7.055 |
|
- type: map_at_5 |
|
value: 8.244 |
|
- type: mrr_at_1 |
|
value: 19.5 |
|
- type: mrr_at_10 |
|
value: 28.777 |
|
- type: mrr_at_100 |
|
value: 29.936 |
|
- type: mrr_at_1000 |
|
value: 30.009999999999998 |
|
- type: mrr_at_3 |
|
value: 25.55 |
|
- type: mrr_at_5 |
|
value: 27.284999999999997 |
|
- type: ndcg_at_1 |
|
value: 19.5 |
|
- type: ndcg_at_10 |
|
value: 16.589000000000002 |
|
- type: ndcg_at_100 |
|
value: 23.879 |
|
- type: ndcg_at_1000 |
|
value: 29.279 |
|
- type: ndcg_at_3 |
|
value: 15.719 |
|
- type: ndcg_at_5 |
|
value: 13.572000000000001 |
|
- type: precision_at_1 |
|
value: 19.5 |
|
- type: precision_at_10 |
|
value: 8.62 |
|
- type: precision_at_100 |
|
value: 1.924 |
|
- type: precision_at_1000 |
|
value: 0.322 |
|
- type: precision_at_3 |
|
value: 14.6 |
|
- type: precision_at_5 |
|
value: 11.78 |
|
- type: recall_at_1 |
|
value: 3.95 |
|
- type: recall_at_10 |
|
value: 17.477999999999998 |
|
- type: recall_at_100 |
|
value: 38.99 |
|
- type: recall_at_1000 |
|
value: 65.417 |
|
- type: recall_at_3 |
|
value: 8.883000000000001 |
|
- type: recall_at_5 |
|
value: 11.933 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-E-PL |
|
revision: None |
|
split: test |
|
type: PL-MTEB/sicke-pl-pairclassification |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 83.48960456583775 |
|
- type: cos_sim_ap |
|
value: 76.31522115825375 |
|
- type: cos_sim_f1 |
|
value: 70.35573122529645 |
|
- type: cos_sim_precision |
|
value: 70.9934735315446 |
|
- type: cos_sim_recall |
|
value: 69.72934472934473 |
|
- type: dot_accuracy |
|
value: 83.48960456583775 |
|
- type: dot_ap |
|
value: 76.31522115825373 |
|
- type: dot_f1 |
|
value: 70.35573122529645 |
|
- type: dot_precision |
|
value: 70.9934735315446 |
|
- type: dot_recall |
|
value: 69.72934472934473 |
|
- type: euclidean_accuracy |
|
value: 83.48960456583775 |
|
- type: euclidean_ap |
|
value: 76.31522115825373 |
|
- type: euclidean_f1 |
|
value: 70.35573122529645 |
|
- type: euclidean_precision |
|
value: 70.9934735315446 |
|
- type: euclidean_recall |
|
value: 69.72934472934473 |
|
- type: manhattan_accuracy |
|
value: 83.46922136159804 |
|
- type: manhattan_ap |
|
value: 76.18474601388084 |
|
- type: manhattan_f1 |
|
value: 70.34779490856937 |
|
- type: manhattan_precision |
|
value: 70.83032490974729 |
|
- type: manhattan_recall |
|
value: 69.87179487179486 |
|
- type: max_accuracy |
|
value: 83.48960456583775 |
|
- type: max_ap |
|
value: 76.31522115825375 |
|
- type: max_f1 |
|
value: 70.35573122529645 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB SICK-R-PL |
|
revision: None |
|
split: test |
|
type: PL-MTEB/sickr-pl-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 77.95374883876302 |
|
- type: cos_sim_spearman |
|
value: 73.77630219171942 |
|
- type: euclidean_pearson |
|
value: 75.81927069594934 |
|
- type: euclidean_spearman |
|
value: 73.7763211303831 |
|
- type: manhattan_pearson |
|
value: 76.03126859057528 |
|
- type: manhattan_spearman |
|
value: 73.96528138013369 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: pl |
|
name: MTEB STS22 (pl) |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 37.388282764841826 |
|
- type: cos_sim_spearman |
|
value: 40.83477184710897 |
|
- type: euclidean_pearson |
|
value: 26.754737044177805 |
|
- type: euclidean_spearman |
|
value: 40.83477184710897 |
|
- type: manhattan_pearson |
|
value: 26.760453110872458 |
|
- type: manhattan_spearman |
|
value: 41.034477441383856 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SciFact-PL |
|
revision: 47932a35f045ef8ed01ba82bf9ff67f6e109207e |
|
split: test |
|
type: clarin-knext/scifact-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 49.15 |
|
- type: map_at_10 |
|
value: 61.690999999999995 |
|
- type: map_at_100 |
|
value: 62.348000000000006 |
|
- type: map_at_1000 |
|
value: 62.38 |
|
- type: map_at_3 |
|
value: 58.824 |
|
- type: map_at_5 |
|
value: 60.662000000000006 |
|
- type: mrr_at_1 |
|
value: 51.333 |
|
- type: mrr_at_10 |
|
value: 62.731 |
|
- type: mrr_at_100 |
|
value: 63.245 |
|
- type: mrr_at_1000 |
|
value: 63.275000000000006 |
|
- type: mrr_at_3 |
|
value: 60.667 |
|
- type: mrr_at_5 |
|
value: 61.93300000000001 |
|
- type: ndcg_at_1 |
|
value: 51.333 |
|
- type: ndcg_at_10 |
|
value: 67.168 |
|
- type: ndcg_at_100 |
|
value: 69.833 |
|
- type: ndcg_at_1000 |
|
value: 70.56700000000001 |
|
- type: ndcg_at_3 |
|
value: 62.40599999999999 |
|
- type: ndcg_at_5 |
|
value: 65.029 |
|
- type: precision_at_1 |
|
value: 51.333 |
|
- type: precision_at_10 |
|
value: 9.333 |
|
- type: precision_at_100 |
|
value: 1.0699999999999998 |
|
- type: precision_at_1000 |
|
value: 0.11299999999999999 |
|
- type: precision_at_3 |
|
value: 25.333 |
|
- type: precision_at_5 |
|
value: 17.067 |
|
- type: recall_at_1 |
|
value: 49.15 |
|
- type: recall_at_10 |
|
value: 82.533 |
|
- type: recall_at_100 |
|
value: 94.167 |
|
- type: recall_at_1000 |
|
value: 99.667 |
|
- type: recall_at_3 |
|
value: 69.917 |
|
- type: recall_at_5 |
|
value: 76.356 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB TRECCOVID-PL |
|
revision: 81bcb408f33366c2a20ac54adafad1ae7e877fdd |
|
split: test |
|
type: clarin-knext/trec-covid-pl |
|
metrics: |
|
- type: map_at_1 |
|
value: 0.261 |
|
- type: map_at_10 |
|
value: 2.1260000000000003 |
|
- type: map_at_100 |
|
value: 12.171999999999999 |
|
- type: map_at_1000 |
|
value: 26.884999999999998 |
|
- type: map_at_3 |
|
value: 0.695 |
|
- type: map_at_5 |
|
value: 1.134 |
|
- type: mrr_at_1 |
|
value: 96.0 |
|
- type: mrr_at_10 |
|
value: 96.952 |
|
- type: mrr_at_100 |
|
value: 96.952 |
|
- type: mrr_at_1000 |
|
value: 96.952 |
|
- type: mrr_at_3 |
|
value: 96.667 |
|
- type: mrr_at_5 |
|
value: 96.667 |
|
- type: ndcg_at_1 |
|
value: 92.0 |
|
- type: ndcg_at_10 |
|
value: 81.193 |
|
- type: ndcg_at_100 |
|
value: 61.129 |
|
- type: ndcg_at_1000 |
|
value: 51.157 |
|
- type: ndcg_at_3 |
|
value: 85.693 |
|
- type: ndcg_at_5 |
|
value: 84.129 |
|
- type: precision_at_1 |
|
value: 96.0 |
|
- type: precision_at_10 |
|
value: 85.39999999999999 |
|
- type: precision_at_100 |
|
value: 62.03999999999999 |
|
- type: precision_at_1000 |
|
value: 22.224 |
|
- type: precision_at_3 |
|
value: 88.0 |
|
- type: precision_at_5 |
|
value: 88.0 |
|
- type: recall_at_1 |
|
value: 0.261 |
|
- type: recall_at_10 |
|
value: 2.262 |
|
- type: recall_at_100 |
|
value: 14.981 |
|
- type: recall_at_1000 |
|
value: 46.837 |
|
- type: recall_at_3 |
|
value: 0.703 |
|
- type: recall_at_5 |
|
value: 1.172 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB AlloProfClusteringP2P |
|
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b |
|
split: test |
|
type: lyon-nlp/alloprof |
|
metrics: |
|
- type: v_measure |
|
value: 70.55290063940157 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB AlloProfClusteringS2S |
|
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b |
|
split: test |
|
type: lyon-nlp/alloprof |
|
metrics: |
|
- type: v_measure |
|
value: 55.41500719337263 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB AlloprofReranking |
|
revision: 666fdacebe0291776e86f29345663dfaf80a0db9 |
|
split: test |
|
type: lyon-nlp/mteb-fr-reranking-alloprof-s2p |
|
metrics: |
|
- type: map |
|
value: 73.48697375332002 |
|
- type: mrr |
|
value: 75.01836585523822 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB AlloprofRetrieval |
|
revision: 392ba3f5bcc8c51f578786c1fc3dae648662cb9b |
|
split: test |
|
type: lyon-nlp/alloprof |
|
metrics: |
|
- type: map_at_1 |
|
value: 38.454 |
|
- type: map_at_10 |
|
value: 51.605000000000004 |
|
- type: map_at_100 |
|
value: 52.653000000000006 |
|
- type: map_at_1000 |
|
value: 52.697 |
|
- type: map_at_3 |
|
value: 48.304 |
|
- type: map_at_5 |
|
value: 50.073 |
|
- type: mrr_at_1 |
|
value: 43.307 |
|
- type: mrr_at_10 |
|
value: 54.400000000000006 |
|
- type: mrr_at_100 |
|
value: 55.147999999999996 |
|
- type: mrr_at_1000 |
|
value: 55.174 |
|
- type: mrr_at_3 |
|
value: 51.77 |
|
- type: mrr_at_5 |
|
value: 53.166999999999994 |
|
- type: ndcg_at_1 |
|
value: 43.307 |
|
- type: ndcg_at_10 |
|
value: 57.891000000000005 |
|
- type: ndcg_at_100 |
|
value: 62.161 |
|
- type: ndcg_at_1000 |
|
value: 63.083 |
|
- type: ndcg_at_3 |
|
value: 51.851 |
|
- type: ndcg_at_5 |
|
value: 54.605000000000004 |
|
- type: precision_at_1 |
|
value: 43.307 |
|
- type: precision_at_10 |
|
value: 9.033 |
|
- type: precision_at_100 |
|
value: 1.172 |
|
- type: precision_at_1000 |
|
value: 0.127 |
|
- type: precision_at_3 |
|
value: 22.798 |
|
- type: precision_at_5 |
|
value: 15.492 |
|
- type: recall_at_1 |
|
value: 38.454 |
|
- type: recall_at_10 |
|
value: 74.166 |
|
- type: recall_at_100 |
|
value: 92.43599999999999 |
|
- type: recall_at_1000 |
|
value: 99.071 |
|
- type: recall_at_3 |
|
value: 58.087 |
|
- type: recall_at_5 |
|
value: 64.568 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: fr |
|
name: MTEB AmazonReviewsClassification (fr) |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
split: test |
|
type: mteb/amazon_reviews_multi |
|
metrics: |
|
- type: accuracy |
|
value: 53.474 |
|
- type: f1 |
|
value: 50.38275392350236 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: default |
|
name: MTEB BSARDRetrieval |
|
revision: 5effa1b9b5fa3b0f9e12523e6e43e5f86a6e6d59 |
|
split: test |
|
type: maastrichtlawtech/bsard |
|
metrics: |
|
- type: map_at_1 |
|
value: 2.252 |
|
- type: map_at_10 |
|
value: 4.661 |
|
- type: map_at_100 |
|
value: 5.271 |
|
- type: map_at_1000 |
|
value: 5.3629999999999995 |
|
- type: map_at_3 |
|
value: 3.604 |
|
- type: map_at_5 |
|
value: 4.3020000000000005 |
|
- type: mrr_at_1 |
|
value: 2.252 |
|
- type: mrr_at_10 |
|
value: 4.661 |
|
- type: mrr_at_100 |
|
value: 5.271 |
|
- type: mrr_at_1000 |
|
value: 5.3629999999999995 |
|
- type: mrr_at_3 |
|
value: 3.604 |
|
- type: mrr_at_5 |
|
value: 4.3020000000000005 |
|
- type: ndcg_at_1 |
|
value: 2.252 |
|
- type: ndcg_at_10 |
|
value: 6.3020000000000005 |
|
- type: ndcg_at_100 |
|
value: 10.342 |
|
- type: ndcg_at_1000 |
|
value: 13.475999999999999 |
|
- type: ndcg_at_3 |
|
value: 4.0649999999999995 |
|
- type: ndcg_at_5 |
|
value: 5.344 |
|
- type: precision_at_1 |
|
value: 2.252 |
|
- type: precision_at_10 |
|
value: 1.171 |
|
- type: precision_at_100 |
|
value: 0.333 |
|
- type: precision_at_1000 |
|
value: 0.059000000000000004 |
|
- type: precision_at_3 |
|
value: 1.802 |
|
- type: precision_at_5 |
|
value: 1.712 |
|
- type: recall_at_1 |
|
value: 2.252 |
|
- type: recall_at_10 |
|
value: 11.712 |
|
- type: recall_at_100 |
|
value: 33.333 |
|
- type: recall_at_1000 |
|
value: 59.458999999999996 |
|
- type: recall_at_3 |
|
value: 5.405 |
|
- type: recall_at_5 |
|
value: 8.559 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: default |
|
name: MTEB HALClusteringS2S |
|
revision: e06ebbbb123f8144bef1a5d18796f3dec9ae2915 |
|
split: test |
|
type: lyon-nlp/clustering-hal-s2s |
|
metrics: |
|
- type: v_measure |
|
value: 28.301882091023288 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MLSUMClusteringP2P |
|
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 |
|
split: test |
|
type: mlsum |
|
metrics: |
|
- type: v_measure |
|
value: 45.26992995191701 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: default |
|
name: MTEB MLSUMClusteringS2S |
|
revision: b5d54f8f3b61ae17845046286940f03c6bc79bc7 |
|
split: test |
|
type: mlsum |
|
metrics: |
|
- type: v_measure |
|
value: 42.773174876871145 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: fr |
|
name: MTEB MTOPDomainClassification (fr) |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
split: test |
|
type: mteb/mtop_domain |
|
metrics: |
|
- type: accuracy |
|
value: 93.47635452552458 |
|
- type: f1 |
|
value: 93.19922617577213 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: fr |
|
name: MTEB MTOPIntentClassification (fr) |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
split: test |
|
type: mteb/mtop_intent |
|
metrics: |
|
- type: accuracy |
|
value: 80.2317569683683 |
|
- type: f1 |
|
value: 56.18060418621901 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: fra |
|
name: MTEB MasakhaNEWSClassification (fra) |
|
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 |
|
split: test |
|
type: masakhane/masakhanews |
|
metrics: |
|
- type: accuracy |
|
value: 85.18957345971565 |
|
- type: f1 |
|
value: 80.829981537394 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: fra |
|
name: MTEB MasakhaNEWSClusteringP2P (fra) |
|
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 |
|
split: test |
|
type: masakhane/masakhanews |
|
metrics: |
|
- type: v_measure |
|
value: 71.04138999801822 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: fra |
|
name: MTEB MasakhaNEWSClusteringS2S (fra) |
|
revision: 8ccc72e69e65f40c70e117d8b3c08306bb788b60 |
|
split: test |
|
type: masakhane/masakhanews |
|
metrics: |
|
- type: v_measure |
|
value: 71.7056263158008 |
|
task: |
|
type: Clustering |
|
- dataset: |
|
config: fr |
|
name: MTEB MassiveIntentClassification (fr) |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
split: test |
|
type: mteb/amazon_massive_intent |
|
metrics: |
|
- type: accuracy |
|
value: 76.65097511768661 |
|
- type: f1 |
|
value: 73.82441070598712 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: fr |
|
name: MTEB MassiveScenarioClassification (fr) |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
split: test |
|
type: mteb/amazon_massive_scenario |
|
metrics: |
|
- type: accuracy |
|
value: 79.09885675857431 |
|
- type: f1 |
|
value: 78.28407777434224 |
|
task: |
|
type: Classification |
|
- dataset: |
|
config: fr |
|
name: MTEB MintakaRetrieval (fr) |
|
revision: efa78cc2f74bbcd21eff2261f9e13aebe40b814e |
|
split: test |
|
type: jinaai/mintakaqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 25.307000000000002 |
|
- type: map_at_10 |
|
value: 36.723 |
|
- type: map_at_100 |
|
value: 37.713 |
|
- type: map_at_1000 |
|
value: 37.769000000000005 |
|
- type: map_at_3 |
|
value: 33.77 |
|
- type: map_at_5 |
|
value: 35.463 |
|
- type: mrr_at_1 |
|
value: 25.307000000000002 |
|
- type: mrr_at_10 |
|
value: 36.723 |
|
- type: mrr_at_100 |
|
value: 37.713 |
|
- type: mrr_at_1000 |
|
value: 37.769000000000005 |
|
- type: mrr_at_3 |
|
value: 33.77 |
|
- type: mrr_at_5 |
|
value: 35.463 |
|
- type: ndcg_at_1 |
|
value: 25.307000000000002 |
|
- type: ndcg_at_10 |
|
value: 42.559999999999995 |
|
- type: ndcg_at_100 |
|
value: 47.457 |
|
- type: ndcg_at_1000 |
|
value: 49.162 |
|
- type: ndcg_at_3 |
|
value: 36.461 |
|
- type: ndcg_at_5 |
|
value: 39.504 |
|
- type: precision_at_1 |
|
value: 25.307000000000002 |
|
- type: precision_at_10 |
|
value: 6.106 |
|
- type: precision_at_100 |
|
value: 0.8420000000000001 |
|
- type: precision_at_1000 |
|
value: 0.098 |
|
- type: precision_at_3 |
|
value: 14.741999999999999 |
|
- type: precision_at_5 |
|
value: 10.319 |
|
- type: recall_at_1 |
|
value: 25.307000000000002 |
|
- type: recall_at_10 |
|
value: 61.056999999999995 |
|
- type: recall_at_100 |
|
value: 84.152 |
|
- type: recall_at_1000 |
|
value: 98.03399999999999 |
|
- type: recall_at_3 |
|
value: 44.226 |
|
- type: recall_at_5 |
|
value: 51.597 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: fr |
|
name: MTEB OpusparcusPC (fr) |
|
revision: 9e9b1f8ef51616073f47f306f7f47dd91663f86a |
|
split: test |
|
type: GEM/opusparcus |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.90069513406156 |
|
- type: cos_sim_ap |
|
value: 100.0 |
|
- type: cos_sim_f1 |
|
value: 99.95032290114257 |
|
- type: cos_sim_precision |
|
value: 100.0 |
|
- type: cos_sim_recall |
|
value: 99.90069513406156 |
|
- type: dot_accuracy |
|
value: 99.90069513406156 |
|
- type: dot_ap |
|
value: 100.0 |
|
- type: dot_f1 |
|
value: 99.95032290114257 |
|
- type: dot_precision |
|
value: 100.0 |
|
- type: dot_recall |
|
value: 99.90069513406156 |
|
- type: euclidean_accuracy |
|
value: 99.90069513406156 |
|
- type: euclidean_ap |
|
value: 100.0 |
|
- type: euclidean_f1 |
|
value: 99.95032290114257 |
|
- type: euclidean_precision |
|
value: 100.0 |
|
- type: euclidean_recall |
|
value: 99.90069513406156 |
|
- type: manhattan_accuracy |
|
value: 99.90069513406156 |
|
- type: manhattan_ap |
|
value: 100.0 |
|
- type: manhattan_f1 |
|
value: 99.95032290114257 |
|
- type: manhattan_precision |
|
value: 100.0 |
|
- type: manhattan_recall |
|
value: 99.90069513406156 |
|
- type: max_accuracy |
|
value: 99.90069513406156 |
|
- type: max_ap |
|
value: 100.0 |
|
- type: max_f1 |
|
value: 99.95032290114257 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: fr |
|
name: MTEB PawsX (fr) |
|
revision: 8a04d940a42cd40658986fdd8e3da561533a3646 |
|
split: test |
|
type: paws-x |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 70.8 |
|
- type: cos_sim_ap |
|
value: 73.7671529695957 |
|
- type: cos_sim_f1 |
|
value: 68.80964339527875 |
|
- type: cos_sim_precision |
|
value: 62.95955882352941 |
|
- type: cos_sim_recall |
|
value: 75.85825027685493 |
|
- type: dot_accuracy |
|
value: 70.8 |
|
- type: dot_ap |
|
value: 73.78345265366947 |
|
- type: dot_f1 |
|
value: 68.80964339527875 |
|
- type: dot_precision |
|
value: 62.95955882352941 |
|
- type: dot_recall |
|
value: 75.85825027685493 |
|
- type: euclidean_accuracy |
|
value: 70.8 |
|
- type: euclidean_ap |
|
value: 73.7671529695957 |
|
- type: euclidean_f1 |
|
value: 68.80964339527875 |
|
- type: euclidean_precision |
|
value: 62.95955882352941 |
|
- type: euclidean_recall |
|
value: 75.85825027685493 |
|
- type: manhattan_accuracy |
|
value: 70.75 |
|
- type: manhattan_ap |
|
value: 73.78996383615953 |
|
- type: manhattan_f1 |
|
value: 68.79432624113475 |
|
- type: manhattan_precision |
|
value: 63.39869281045751 |
|
- type: manhattan_recall |
|
value: 75.1937984496124 |
|
- type: max_accuracy |
|
value: 70.8 |
|
- type: max_ap |
|
value: 73.78996383615953 |
|
- type: max_f1 |
|
value: 68.80964339527875 |
|
task: |
|
type: PairClassification |
|
- dataset: |
|
config: default |
|
name: MTEB SICKFr |
|
revision: e077ab4cf4774a1e36d86d593b150422fafd8e8a |
|
split: test |
|
type: Lajavaness/SICK-fr |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.03253762760392 |
|
- type: cos_sim_spearman |
|
value: 79.68280105762004 |
|
- type: euclidean_pearson |
|
value: 80.98265050044444 |
|
- type: euclidean_spearman |
|
value: 79.68233242682867 |
|
- type: manhattan_pearson |
|
value: 80.9678911810704 |
|
- type: manhattan_spearman |
|
value: 79.70264097683109 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: fr |
|
name: MTEB STS22 (fr) |
|
revision: eea2b4fe26a775864c896887d910b76a8098ad3f |
|
split: test |
|
type: mteb/sts22-crosslingual-sts |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.56896987572884 |
|
- type: cos_sim_spearman |
|
value: 81.84352499523287 |
|
- type: euclidean_pearson |
|
value: 80.40831759421305 |
|
- type: euclidean_spearman |
|
value: 81.84352499523287 |
|
- type: manhattan_pearson |
|
value: 80.74333857561238 |
|
- type: manhattan_spearman |
|
value: 82.41503246733892 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: fr |
|
name: MTEB STSBenchmarkMultilingualSTS (fr) |
|
revision: 93d57ef91790589e3ce9c365164337a8a78b7632 |
|
split: test |
|
type: stsb_multi_mt |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.71826762276979 |
|
- type: cos_sim_spearman |
|
value: 82.25433354916042 |
|
- type: euclidean_pearson |
|
value: 81.87115571724316 |
|
- type: euclidean_spearman |
|
value: 82.25322342890107 |
|
- type: manhattan_pearson |
|
value: 82.11174867527224 |
|
- type: manhattan_spearman |
|
value: 82.55905365203084 |
|
task: |
|
type: STS |
|
- dataset: |
|
config: default |
|
name: MTEB SummEvalFr |
|
revision: b385812de6a9577b6f4d0f88c6a6e35395a94054 |
|
split: test |
|
type: lyon-nlp/summarization-summeval-fr-p2p |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.659441623392887 |
|
- type: cos_sim_spearman |
|
value: 30.501134097353315 |
|
- type: dot_pearson |
|
value: 30.659444768851056 |
|
- type: dot_spearman |
|
value: 30.501134097353315 |
|
task: |
|
type: Summarization |
|
- dataset: |
|
config: default |
|
name: MTEB SyntecReranking |
|
revision: b205c5084a0934ce8af14338bf03feb19499c84d |
|
split: test |
|
type: lyon-nlp/mteb-fr-reranking-syntec-s2p |
|
metrics: |
|
- type: map |
|
value: 94.03333333333333 |
|
- type: mrr |
|
value: 94.03333333333333 |
|
task: |
|
type: Reranking |
|
- dataset: |
|
config: default |
|
name: MTEB SyntecRetrieval |
|
revision: 77f7e271bf4a92b24fce5119f3486b583ca016ff |
|
split: test |
|
type: lyon-nlp/mteb-fr-retrieval-syntec-s2p |
|
metrics: |
|
- type: map_at_1 |
|
value: 79.0 |
|
- type: map_at_10 |
|
value: 87.61 |
|
- type: map_at_100 |
|
value: 87.655 |
|
- type: map_at_1000 |
|
value: 87.655 |
|
- type: map_at_3 |
|
value: 87.167 |
|
- type: map_at_5 |
|
value: 87.36699999999999 |
|
- type: mrr_at_1 |
|
value: 79.0 |
|
- type: mrr_at_10 |
|
value: 87.61 |
|
- type: mrr_at_100 |
|
value: 87.655 |
|
- type: mrr_at_1000 |
|
value: 87.655 |
|
- type: mrr_at_3 |
|
value: 87.167 |
|
- type: mrr_at_5 |
|
value: 87.36699999999999 |
|
- type: ndcg_at_1 |
|
value: 79.0 |
|
- type: ndcg_at_10 |
|
value: 90.473 |
|
- type: ndcg_at_100 |
|
value: 90.694 |
|
- type: ndcg_at_1000 |
|
value: 90.694 |
|
- type: ndcg_at_3 |
|
value: 89.464 |
|
- type: ndcg_at_5 |
|
value: 89.851 |
|
- type: precision_at_1 |
|
value: 79.0 |
|
- type: precision_at_10 |
|
value: 9.9 |
|
- type: precision_at_100 |
|
value: 1.0 |
|
- type: precision_at_1000 |
|
value: 0.1 |
|
- type: precision_at_3 |
|
value: 32.0 |
|
- type: precision_at_5 |
|
value: 19.400000000000002 |
|
- type: recall_at_1 |
|
value: 79.0 |
|
- type: recall_at_10 |
|
value: 99.0 |
|
- type: recall_at_100 |
|
value: 100.0 |
|
- type: recall_at_1000 |
|
value: 100.0 |
|
- type: recall_at_3 |
|
value: 96.0 |
|
- type: recall_at_5 |
|
value: 97.0 |
|
task: |
|
type: Retrieval |
|
- dataset: |
|
config: fr |
|
name: MTEB XPQARetrieval (fr) |
|
revision: c99d599f0a6ab9b85b065da6f9d94f9cf731679f |
|
split: test |
|
type: jinaai/xpqa |
|
metrics: |
|
- type: map_at_1 |
|
value: 39.395 |
|
- type: map_at_10 |
|
value: 59.123999999999995 |
|
- type: map_at_100 |
|
value: 60.704 |
|
- type: map_at_1000 |
|
value: 60.760000000000005 |
|
- type: map_at_3 |
|
value: 53.187 |
|
- type: map_at_5 |
|
value: 56.863 |
|
- type: mrr_at_1 |
|
value: 62.083 |
|
- type: mrr_at_10 |
|
value: 68.87299999999999 |
|
- type: mrr_at_100 |
|
value: 69.46900000000001 |
|
- type: mrr_at_1000 |
|
value: 69.48299999999999 |
|
- type: mrr_at_3 |
|
value: 66.8 |
|
- type: mrr_at_5 |
|
value: 67.928 |
|
- type: ndcg_at_1 |
|
value: 62.083 |
|
- type: ndcg_at_10 |
|
value: 65.583 |
|
- type: ndcg_at_100 |
|
value: 70.918 |
|
- type: ndcg_at_1000 |
|
value: 71.72800000000001 |
|
- type: ndcg_at_3 |
|
value: 60.428000000000004 |
|
- type: ndcg_at_5 |
|
value: 61.853 |
|
- type: precision_at_1 |
|
value: 62.083 |
|
- type: precision_at_10 |
|
value: 15.033 |
|
- type: precision_at_100 |
|
value: 1.9529999999999998 |
|
- type: precision_at_1000 |
|
value: 0.207 |
|
- type: precision_at_3 |
|
value: 36.315 |
|
- type: precision_at_5 |
|
value: 25.955000000000002 |
|
- type: recall_at_1 |
|
value: 39.395 |
|
- type: recall_at_10 |
|
value: 74.332 |
|
- type: recall_at_100 |
|
value: 94.729 |
|
- type: recall_at_1000 |
|
value: 99.75500000000001 |
|
- type: recall_at_3 |
|
value: 57.679 |
|
- type: recall_at_5 |
|
value: 65.036 |
|
task: |
|
type: Retrieval |
|
--- |
|
|
|
## gte-Qwen2-1.5B-instruct |
|
|
|
**gte-Qwen2-1.5B-instruct** is the latest model in the gte (General Text Embedding) model family. The model is built on [Qwen2-1.5B](https://huggingface.co./Qwen/Qwen2-1.5B) LLM model and use the same training data and strategies as the [gte-Qwen2-7B-instruct](https://huggingface.co./Alibaba-NLP/gte-Qwen2-7B-instruct) model. |
|
|
|
The model incorporates several key advancements: |
|
|
|
- Integration of bidirectional attention mechanisms, enriching its contextual understanding. |
|
- Instruction tuning, applied solely on the query side for streamlined efficiency |
|
- Comprehensive training across a vast, multilingual text corpus spanning diverse domains and scenarios. This training leverages both weakly supervised and supervised data, ensuring the model's applicability across numerous languages and a wide array of downstream tasks. |
|
|
|
|
|
## Model Information |
|
- Model Size: 1.5B |
|
- Embedding Dimension: 1536 |
|
- Max Input Tokens: 32k |
|
|
|
## Requirements |
|
``` |
|
transformers>=4.39.2 |
|
flash_attn>=2.5.6 |
|
``` |
|
## Usage |
|
|
|
### Sentence Transformers |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
model = SentenceTransformer("Alibaba-NLP/gte-Qwen2-1.5B-instruct", trust_remote_code=True) |
|
# In case you want to reduce the maximum length: |
|
model.max_seq_length = 8192 |
|
|
|
queries = [ |
|
"how much protein should a female eat", |
|
"summit define", |
|
] |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments.", |
|
] |
|
|
|
query_embeddings = model.encode(queries, prompt_name="query") |
|
document_embeddings = model.encode(documents) |
|
|
|
scores = (query_embeddings @ document_embeddings.T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
Observe the [config_sentence_transformers.json](config_sentence_transformers.json) to see all pre-built prompt names. Otherwise, you can use `model.encode(queries, prompt="Instruct: ...\nQuery: "` to use a custom prompt of your choice. |
|
|
|
### Transformers |
|
|
|
```python |
|
import torch |
|
import torch.nn.functional as F |
|
|
|
from torch import Tensor |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
|
|
def last_token_pool(last_hidden_states: Tensor, |
|
attention_mask: Tensor) -> Tensor: |
|
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) |
|
if left_padding: |
|
return last_hidden_states[:, -1] |
|
else: |
|
sequence_lengths = attention_mask.sum(dim=1) - 1 |
|
batch_size = last_hidden_states.shape[0] |
|
return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths] |
|
|
|
|
|
def get_detailed_instruct(task_description: str, query: str) -> str: |
|
return f'Instruct: {task_description}\nQuery: {query}' |
|
|
|
|
|
# Each query must come with a one-sentence instruction that describes the task |
|
task = 'Given a web search query, retrieve relevant passages that answer the query' |
|
queries = [ |
|
get_detailed_instruct(task, 'how much protein should a female eat'), |
|
get_detailed_instruct(task, 'summit define') |
|
] |
|
# No need to add instruction for retrieval documents |
|
documents = [ |
|
"As a general guideline, the CDC's average requirement of protein for women ages 19 to 70 is 46 grams per day. But, as you can see from this chart, you'll need to increase that if you're expecting or training for a marathon. Check out the chart below to see how much protein you should be eating each day.", |
|
"Definition of summit for English Language Learners. : 1 the highest point of a mountain : the top of a mountain. : 2 the highest level. : 3 a meeting or series of meetings between the leaders of two or more governments." |
|
] |
|
input_texts = queries + documents |
|
|
|
tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) |
|
model = AutoModel.from_pretrained('Alibaba-NLP/gte-Qwen2-1.5B-instruct', trust_remote_code=True) |
|
|
|
max_length = 8192 |
|
|
|
# Tokenize the input texts |
|
batch_dict = tokenizer(input_texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt') |
|
outputs = model(**batch_dict) |
|
embeddings = last_token_pool(outputs.last_hidden_state, batch_dict['attention_mask']) |
|
|
|
# normalize embeddings |
|
embeddings = F.normalize(embeddings, p=2, dim=1) |
|
scores = (embeddings[:2] @ embeddings[2:].T) * 100 |
|
print(scores.tolist()) |
|
``` |
|
|
|
### infinity_emb |
|
|
|
Usage via [infinity, MIT Licensed](https://github.com/michaelfeil/infinity). |
|
```bash |
|
docker run \ |
|
--gpus "0" -p "7997":"7997" \ |
|
michaelf34/infinity:0.0.68-trt-onnx \ |
|
v2 --model-id Alibaba-NLP/gte-Qwen2-1.5B-instruct --revision "refs/pr/20" --dtype bfloat16 --batch-size 16 --device cuda --engine torch --port 7997 --no-bettertransformer |
|
``` |
|
|
|
## Evaluation |
|
|
|
### MTEB & C-MTEB |
|
|
|
You can use the [scripts/eval_mteb.py](https://huggingface.co./Alibaba-NLP/gte-Qwen2-7B-instruct/blob/main/scripts/eval_mteb.py) to reproduce the following result of **gte-Qwen2-1.5B-instruct** on MTEB(English)/C-MTEB(Chinese): |
|
|
|
| Model Name | MTEB(56) | C-MTEB(35) | MTEB-fr(26) | MTEB-pl(26) | |
|
|:----:|:---------:|:----------:|:----------:|:----------:| |
|
| [bge-base-en-1.5](https://huggingface.co./BAAI/bge-base-en-v1.5) | 64.23 | - | - | - | |
|
| [bge-large-en-1.5](https://huggingface.co./BAAI/bge-large-en-v1.5) | 63.55 | - | - | - | |
|
| [gte-large-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5) | 65.39 | - | - | - | |
|
| [gte-base-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5) | 64.11 | - | - | - | |
|
| [mxbai-embed-large-v1](https://huggingface.co./mixedbread-ai/mxbai-embed-large-v1) | 64.68 | - | - | - | |
|
| [acge_text_embedding](https://huggingface.co./aspire/acge_text_embedding) | - | 69.07 | - | - | |
|
| [stella-mrl-large-zh-v3.5-1792d](https://huggingface.co./infgrad/stella-mrl-large-zh-v3.5-1792d) | - | 68.55 | - | - | |
|
| [gte-large-zh](https://huggingface.co./thenlper/gte-large-zh) | - | 66.72 | - | - | |
|
| [multilingual-e5-base](https://huggingface.co./intfloat/multilingual-e5-base) | 59.45 | 56.21 | - | - | |
|
| [multilingual-e5-large](https://huggingface.co./intfloat/multilingual-e5-large) | 61.50 | 58.81 | - | - | |
|
| [e5-mistral-7b-instruct](https://huggingface.co./intfloat/e5-mistral-7b-instruct) | 66.63 | 60.81 | - | - | |
|
| [gte-Qwen1.5-7B-instruct](https://huggingface.co./Alibaba-NLP/gte-Qwen1.5-7B-instruct) | 67.34 | 69.52 | - | - | |
|
| [NV-Embed-v1](https://huggingface.co./nvidia/NV-Embed-v1) | 69.32 | - | - | - | |
|
| [**gte-Qwen2-7B-instruct**](https://huggingface.co./Alibaba-NLP/gte-Qwen2-7B-instruct) | **70.24** | **72.05** | **68.25** | **67.86** | |
|
| [**gte-Qwen2-1.5B-instruct**](https://huggingface.co./Alibaba-NLP/gte-Qwen2-1.5B-instruct) | **67.16** | **67.65** | **66.60** | **64.04** | |
|
|
|
### GTE Models |
|
|
|
The gte series models have consistently released two types of models: encoder-only models (based on the BERT architecture) and decode-only models (based on the LLM architecture). |
|
|
|
| Models | Language | Max Sequence Length | Dimension | Model Size (Memory Usage, fp32) | |
|
|:-------------------------------------------------------------------------------------:|:--------:|:-----: |:---------:|:-------------------------------:| |
|
| [GTE-large-zh](https://huggingface.co./thenlper/gte-large-zh) | Chinese | 512 | 1024 | 1.25GB | |
|
| [GTE-base-zh](https://huggingface.co./thenlper/gte-base-zh) | Chinese | 512 | 512 | 0.41GB | |
|
| [GTE-small-zh](https://huggingface.co./thenlper/gte-small-zh) | Chinese | 512 | 512 | 0.12GB | |
|
| [GTE-large](https://huggingface.co./thenlper/gte-large) | English | 512 | 1024 | 1.25GB | |
|
| [GTE-base](https://huggingface.co./thenlper/gte-base) | English | 512 | 512 | 0.21GB | |
|
| [GTE-small](https://huggingface.co./thenlper/gte-small) | English | 512 | 384 | 0.10GB | |
|
| [GTE-large-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-large-en-v1.5) | English | 8192 | 1024 | 1.74GB | |
|
| [GTE-base-en-v1.5](https://huggingface.co./Alibaba-NLP/gte-base-en-v1.5) | English | 8192 | 768 | 0.51GB | |
|
| [GTE-Qwen1.5-7B-instruct](https://huggingface.co./Alibaba-NLP/gte-Qwen1.5-7B-instruct) | Multilingual | 32000 | 4096 | 26.45GB | |
|
| [GTE-Qwen2-7B-instruct](https://huggingface.co./Alibaba-NLP/gte-Qwen2-7B-instruct) | Multilingual | 32000 | 3584 | 26.45GB | |
|
| [GTE-Qwen2-1.5B-instruct](https://huggingface.co./Alibaba-NLP/gte-Qwen2-1.5B-instruct) | Multilingual | 32000 | 1536 | 6.62GB | |
|
|
|
|
|
## Cloud API Services |
|
|
|
In addition to the open-source [GTE](https://huggingface.co./collections/Alibaba-NLP/gte-models-6680f0b13f885cb431e6d469) series models, GTE series models are also available as commercial API services on Alibaba Cloud. |
|
|
|
- [Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): Rhree versions of the text embedding models are available: text-embedding-v1/v2/v3, with v3 being the latest API service. |
|
- [ReRank Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-sorting-model/): The gte-rerank model service is available. |
|
|
|
Note that the models behind the commercial APIs are not entirely identical to the open-source models. |
|
|
|
## Citation |
|
|
|
If you find our paper or models helpful, please consider cite: |
|
|
|
``` |
|
@article{li2023towards, |
|
title={Towards general text embeddings with multi-stage contrastive learning}, |
|
author={Li, Zehan and Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Pengjun and Zhang, Meishan}, |
|
journal={arXiv preprint arXiv:2308.03281}, |
|
year={2023} |
|
} |
|
``` |
|
|