Ali-Forootani's picture
Update README.md
1e5f944 verified
|
raw
history blame
16.3 kB
metadata
library_name: transformers
tags: []

Fine-Tuning LLaMA-2-7b with QLoRA on Custom Dataset

This repository provides a setup and script for fine-tuning the LLaMA-2-7b model using QLoRA (Quantized Low-Rank Adaptation) with custom datasets. The script is designed for efficiency and flexibility in training large language models (LLMs) by leveraging advanced techniques such as 4-bit quantization and LoRA.

Overview

The script fine-tunes a pre-trained LLaMA-2-7b model using a custom dataset, applying QLoRA techniques to optimize performance. It utilizes the transformers, datasets, peft, and trl libraries for model management, data processing, and training. The setup includes support for mixed precision training, gradient checkpointing, and advanced quantization techniques to enhance the efficiency of the fine-tuning process.

Components

1. Dependencies

Ensure the following libraries are installed:

  • torch
  • datasets
  • transformers
  • peft
  • trl

Install them using pip if they are not already available:

pip install torch datasets transformers peft trl

2. Model and Dataset

  • Model: The base model used is LLaMA-2-7b. The script loads this model from a specified local directory.
  • Dataset: The training data is loaded from a specified directory. The dataset should be formatted in a way that the "text" field contains the training examples.

3. QLoRA Configuration

QLoRA parameters are used to configure the quantization and adaptation process:

  • LoRA Attention Dimension (lora_r): 64
  • LoRA Alpha Parameter (lora_alpha): 16
  • LoRA Dropout Probability (lora_dropout): 0.1

4. BitsAndBytes Configuration

Quantization settings for the model:

  • Use 4-bit Precision: True
  • Compute Data Type: float16
  • Quantization Type: nf4
  • Nested Quantization: False

5. Training Configuration

Training parameters are defined as follows:

  • Output Directory: ./results
  • Number of Epochs: 300
  • Batch Size: 4
  • Gradient Accumulation Steps: 1
  • Learning Rate: 2e-4
  • Weight Decay: 0.001
  • Optimizer: paged_adamw_32bit
  • Learning Rate Scheduler: cosine
  • Gradient Clipping: 0.3
  • Warmup Ratio: 0.03
  • Logging Steps: 25
  • Save Steps: 0

6. Training and Evaluation

The script includes preprocessing of the dataset, model initialization with QLoRA, and training using SFTTrainer from the trl library. It supports mixed precision training and gradient checkpointing to enhance training efficiency.

7. Usage Instructions

  1. Update File Paths: Adjust model_name, dataset_name, and new_model paths according to your environment.
  2. Run the Script: Execute the script in your Python environment to start the fine-tuning process.
python fine_tune_llama.py
  1. Monitor Training: Use TensorBoard or similar tools to monitor the training progress.

8. Model Saving

After training, the model is saved to the specified directory (new_model). This trained model can be loaded for further evaluation or deployment.

Example Configuration

Here’s an example configuration used for fine-tuning:

hint: the base model is: NousResearch/Llama-2-7b-chat-hf hint: the dataset is: mlabonne/guanaco-llama2-1k

hint: I saved them on my local machine then laod them! you can directly download them from huggingface

model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf" # the base model is: NousResearch/Llama-2-7b-chat-hf
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k" # the dataset is: mlabonne/guanaco-llama2-1k
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

lora_r = 64
lora_alpha = 16
lora_dropout = 0.1

use_4bit = True
bnb_4bit_compute_dtype = "float16"
bnb_4bit_quant_type = "nf4"
use_nested_quant = False

output_dir = "./results"
num_train_epochs = 300
fp16 = False
bf16 = False
per_device_train_batch_size = 4
gradient_accumulation_steps = 1
gradient_checkpointing = True
max_grad_norm = 0.3
learning_rate = 2e-4
weight_decay = 0.001
optim = "paged_adamw_32bit"
lr_scheduler_type = "cosine"
max_steps = -1
warmup_ratio = 0.03
group_by_length = True
save_steps = 0
logging_steps = 25

The entire Python training module:



import os
import torch
from datasets import load_dataset
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
    HfArgumentParser,
    TrainingArguments,
    pipeline,
    logging,
)
from peft import LoraConfig, PeftModel
from trl import SFTTrainer



import sys
import os

cwd = os.getcwd()
# sys.path.append(cwd + '/my_directory')
sys.path.append(cwd)


def setting_directory(depth):
    current_dir = os.path.abspath(os.getcwd())
    root_dir = current_dir
    for i in range(depth):
        root_dir = os.path.abspath(os.path.join(root_dir, os.pardir))
        sys.path.append(os.path.dirname(root_dir))
    return root_dir

#################################
#S:\Llavar_repo\LLaVA\NousResearch\Llama-2-7b-chat-hf

# The model that you want to train from the Hugging Face hub



model_name = "/data/bio-eng-llm/llm_repo/NousResearch/Llama-2-7b-chat-hf"


#model_name = setting_directory(2) + "\\Llavar_repo\\LLaVA\NousResearch\\Llama-2-7b-chat-hf"



# The instruction dataset to use
dataset_name = "/data/bio-eng-llm/llm_repo/mlabonne/guanaco-llama2-1k"

# Fine-tuned model name
new_model = "/data/bio-eng-llm/llm_repo/mlabonne/llama-2-7b-miniguanaco"

################################################################################
# QLoRA parameters
################################################################################

# LoRA attention dimension
lora_r = 64

# Alpha parameter for LoRA scaling
lora_alpha = 16

# Dropout probability for LoRA layers
lora_dropout = 0.1

################################################################################
# bitsandbytes parameters
################################################################################

# Activate 4-bit precision base model loading
use_4bit = True

# Compute dtype for 4-bit base models
bnb_4bit_compute_dtype = "float16"

# Quantization type (fp4 or nf4)
bnb_4bit_quant_type = "nf4"

# Activate nested quantization for 4-bit base models (double quantization)
use_nested_quant = False

################################################################################
# TrainingArguments parameters
################################################################################

# Output directory where the model predictions and checkpoints will be stored
output_dir = "./results"

# Number of training epochs
num_train_epochs = 300

# Enable fp16/bf16 training (set bf16 to True with an A100)
fp16 = False
bf16 = False

# Batch size per GPU for training
per_device_train_batch_size = 4

# Batch size per GPU for evaluation
per_device_eval_batch_size = 4

# Number of update steps to accumulate the gradients for
gradient_accumulation_steps = 1

# Enable gradient checkpointing
gradient_checkpointing = True

# Maximum gradient normal (gradient clipping)
max_grad_norm = 0.3

# Initial learning rate (AdamW optimizer)
learning_rate = 2e-4

# Weight decay to apply to all layers except bias/LayerNorm weights
weight_decay = 0.001

# Optimizer to use
optim = "paged_adamw_32bit"

# Learning rate schedule
lr_scheduler_type = "cosine"

# Number of training steps (overrides num_train_epochs)
max_steps = -1

# Ratio of steps for a linear warmup (from 0 to learning rate)
warmup_ratio = 0.03

# Group sequences into batches with same length
# Saves memory and speeds up training considerably
group_by_length = True

# Save checkpoint every X updates steps
save_steps = 0

# Log every X updates steps
logging_steps = 25

################################################################################
# SFT parameters
################################################################################

# Maximum sequence length to use
max_seq_length = None

# Pack multiple short examples in the same input sequence to increase efficiency
packing = False

# Load the entire model on the GPU 0
device_map = {"": 0}



################################################################################


# Load dataset (you can process it here)
dataset = load_dataset(dataset_name, split="train")

print(dataset[0].keys())  # This will print all the field names in your dataset

# Load tokenizer and model with QLoRA configuration
compute_dtype = getattr(torch, bnb_4bit_compute_dtype)

bnb_config = BitsAndBytesConfig(
    load_in_4bit=use_4bit,
    bnb_4bit_quant_type=bnb_4bit_quant_type,
    bnb_4bit_compute_dtype=compute_dtype,
    bnb_4bit_use_double_quant=use_nested_quant,
)

# Check GPU compatibility with bfloat16
if compute_dtype == torch.float16 and use_4bit:
    major, _ = torch.cuda.get_device_capability()
    if major >= 8:
        print("=" * 80)
        print("Your GPU supports bfloat16: accelerate training with bf16=True")
        print("=" * 80)

# Load base model
model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=bnb_config,
    device_map=device_map
)
model.config.use_cache = False
model.config.pretraining_tp = 1

# Load LLaMA tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training

# Load LoRA configuration
peft_config = LoraConfig(
    lora_alpha=lora_alpha,
    lora_dropout=lora_dropout,
    r=lora_r,
    bias="none",
    task_type="CAUSAL_LM",
)

# Set training parameters
training_arguments = TrainingArguments(
    output_dir=output_dir,
    num_train_epochs=num_train_epochs,
    per_device_train_batch_size=per_device_train_batch_size,
    gradient_accumulation_steps=gradient_accumulation_steps,
    optim=optim,
    save_steps=save_steps,
    logging_steps=logging_steps,
    learning_rate=learning_rate,
    weight_decay=weight_decay,
    fp16=fp16,
    bf16=bf16,
    max_grad_norm=max_grad_norm,
    max_steps=max_steps,
    warmup_ratio=warmup_ratio,
    group_by_length=group_by_length,
    lr_scheduler_type=lr_scheduler_type,
    report_to="tensorboard"
)

# Set supervised fine-tuning parameters

def preprocess_function(examples):
    return tokenizer(examples["text"], truncation=True, max_length=512)

tokenized_dataset = dataset.map(preprocess_function, batched=True)

trainer = SFTTrainer(
    model=model,
    train_dataset=tokenized_dataset,
    peft_config=peft_config,
    tokenizer=tokenizer,
    args=training_arguments,
    packing=packing,
)

# Train model
trainer.train()

# Save trained model
trainer.model.save_pretrained(new_model)

License

This repository is licensed under the MIT License.

Contact

For questions or issues, please contact author.


This README provides a comprehensive guide to understanding and utilizing the script for fine-tuning the LLaMA-2-7b model using advanced techniques. Adjust file paths and parameters as needed based on your specific requirements.

Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]