metadata
license: apache-2.0
language:
- sw
base_model:
- google/gemma-2-27b-it
pipeline_tag: text-generation
library_name: transformers
tags:
- gemma2
- swahili
inference:
parameters:
temperature: 0.7
top_p: 0.95
max_new_tokens: 500
do_sample: true
eval_mode: true
model_kwargs:
eval_mode: true
Gemma2-27B-Swahili-IT
Gemma2-27B-Swahili-IT is a state-of-the-art open variant of Google's Gemma2-27B-IT model, fine-tuned for natural Swahili language understanding and generation. This model utilizes Quantized Low-Rank Adaptation (QLoRA) to achieve efficient fine-tuning while maintaining performance.
Model Details
- Developer: Alfaxad Eyembe
- Base Model: google/gemma-2-27b-it
- Model Type: Decoder-only transformer
- Language(s): Swahili
- License: Apache 2.0
- Finetuning Approach: QLoRA (4-bit quantization)
Training Data
The model was fine-tuned on a comprehensive dataset containing:
- 67,017 instruction-response pairs
- 16,273,709 total tokens
- Average 242.83 tokens per example
- High-quality, naturally-written Swahili content
Performance
Massive Multitask Language Understanding (MMLU) - Swahili
- Base Model: 22.81% accuracy
- Fine-tuned Model: 57.89% accuracy
- Improvement: +35.08%
Swahili Sentiment Analysis
- Base Model: 89.90% accuracy
- Fine-tuned Model: 90.00% accuracy
- Perfect response validity (100%)
Intended Use
This model is designed for:
- Natural Swahili text generation
- Question answering
- Content analysis
- Creative writing
- General instruction following in Swahili
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
import torch
# Configure 4-bit quantization
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("alfaxadeyembe/gemma2-27b-swahili-it")
model = AutoModelForCausalLM.from_pretrained(
"alfaxadeyembe/gemma2-27b-swahili-it",
quantization_config=bnb_config,
device_map="auto",
torch_dtype=torch.bfloat16
)
# Always set to eval mode for inference
model.eval()
# Example usage
prompt = "Eleza dhana ya uchumi wa kidijitali na umuhimu wake katika ulimwengu wa leo."
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=500,
do_sample=True,
temperature=0.7,
top_p=0.95
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(response)
Training Details
- Fine-tuning Method: QLoRA (4-bit quantization)
- Training Steps: 150
- Batch Size: 1
- Gradient Accumulation Steps: 64
- Learning Rate: 1.5e-4
- Training Time: ~10 hours on A100 GPU
Citation
@misc{gemma2-27b-swahili-it,
author = {Alfaxad Eyembe},
title = {Gemma2-27B-Swahili-IT: Swahili Variation of Gemma2-27b-it Model},
year = {2025},
publisher = {Hugging Face},
journal = {Hugging Face Model Hub},
}
Contact
For questions or feedback, please reach out through: