This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - PT dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2290
  • Wer: 0.2382

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1500
  • num_epochs: 15.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
3.0952 0.64 500 3.0982 1.0
1.7975 1.29 1000 0.7887 0.5651
1.4138 1.93 1500 0.5238 0.4389
1.344 2.57 2000 0.4775 0.4318
1.2737 3.21 2500 0.4648 0.4075
1.2554 3.86 3000 0.4069 0.3678
1.1996 4.5 3500 0.3914 0.3668
1.1427 5.14 4000 0.3694 0.3572
1.1372 5.78 4500 0.3568 0.3501
1.0831 6.43 5000 0.3331 0.3253
1.1074 7.07 5500 0.3332 0.3352
1.0536 7.71 6000 0.3131 0.3152
1.0248 8.35 6500 0.3024 0.3023
1.0075 9.0 7000 0.2948 0.3028
0.979 9.64 7500 0.2796 0.2853
0.9594 10.28 8000 0.2719 0.2789
0.9172 10.93 8500 0.2620 0.2695
0.9047 11.57 9000 0.2537 0.2596
0.8777 12.21 9500 0.2438 0.2525
0.8629 12.85 10000 0.2409 0.2493
0.8575 13.5 10500 0.2366 0.2440
0.8361 14.14 11000 0.2317 0.2385
0.8126 14.78 11500 0.2290 0.2382

Framework versions

  • Transformers 4.17.0.dev0
  • Pytorch 1.10.2+cu102
  • Datasets 1.18.2.dev0
  • Tokenizers 0.11.0
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train AlexN/xls-r-300m-pt

Evaluation results