aleksis_heb_base / README.md
Alex2575's picture
End of training
47761fc
metadata
language:
  - he
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - Alex2575/heb_anna
metrics:
  - wer
model-index:
  - name: aleksis_heb_base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: heb_anna
          type: Alex2575/heb_anna
        metrics:
          - name: Wer
            type: wer
            value: 8.770548282311251

aleksis_heb_base

This model is a fine-tuned version of openai/whisper-base on the heb_anna dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1006
  • Wer Ortho: 8.7616
  • Wer: 8.7705

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant_with_warmup
  • lr_scheduler_warmup_steps: 50
  • training_steps: 500
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Ortho Wer
0.0584 4.24 500 0.1006 8.7616 8.7705

Framework versions

  • Transformers 4.35.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1