metadata
language:
- he
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- Alex2575/heb_anna
metrics:
- wer
model-index:
- name: aleksis_heb_base
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: heb_anna
type: Alex2575/heb_anna
metrics:
- name: Wer
type: wer
value: 8.770548282311251
aleksis_heb_base
This model is a fine-tuned version of openai/whisper-base on the heb_anna dataset. It achieves the following results on the evaluation set:
- Loss: 0.1006
- Wer Ortho: 8.7616
- Wer: 8.7705
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant_with_warmup
- lr_scheduler_warmup_steps: 50
- training_steps: 500
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer |
---|---|---|---|---|---|
0.0584 | 4.24 | 500 | 0.1006 | 8.7616 | 8.7705 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.14.5
- Tokenizers 0.14.1