dalio-1.3b-test
This model is a fine-tuned version of facebook/opt-1.3b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.6035
- Accuracy: 0.0672
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 2.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.6133 | 0.08 | 1 | 2.625 | 0.0652 |
2.6199 | 0.15 | 2 | 2.625 | 0.0652 |
2.7202 | 0.23 | 3 | 2.6113 | 0.0658 |
2.6177 | 0.31 | 4 | 2.6113 | 0.0658 |
2.5422 | 0.38 | 5 | 2.5703 | 0.0661 |
2.5627 | 0.46 | 6 | 2.5566 | 0.0662 |
2.5784 | 0.54 | 7 | 2.5469 | 0.0664 |
2.5264 | 0.62 | 8 | 2.5371 | 0.0663 |
2.3396 | 0.69 | 9 | 2.5332 | 0.0670 |
2.4297 | 0.77 | 10 | 2.5273 | 0.0673 |
2.3914 | 0.85 | 11 | 2.5234 | 0.0672 |
2.429 | 0.92 | 12 | 2.5195 | 0.0671 |
2.3055 | 1.0 | 13 | 2.5117 | 0.0672 |
1.7162 | 1.08 | 14 | 2.5215 | 0.0672 |
1.7264 | 1.15 | 15 | 2.5469 | 0.0677 |
1.7559 | 1.23 | 16 | 2.5879 | 0.0671 |
1.7899 | 1.31 | 17 | 2.6113 | 0.0667 |
1.6465 | 1.38 | 18 | 2.6191 | 0.0666 |
1.5955 | 1.46 | 19 | 2.6074 | 0.0671 |
1.5389 | 1.54 | 20 | 2.5957 | 0.0672 |
1.5356 | 1.62 | 21 | 2.5859 | 0.0670 |
1.386 | 1.69 | 22 | 2.5820 | 0.0672 |
1.7698 | 1.77 | 23 | 2.5742 | 0.0670 |
1.3923 | 1.85 | 24 | 2.5801 | 0.0669 |
1.4723 | 1.92 | 25 | 2.5898 | 0.0672 |
1.5653 | 2.0 | 26 | 2.6035 | 0.0672 |
Framework versions
- Transformers 4.25.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.3.2
- Tokenizers 0.12.1
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.