emotions_classifier / README.md
Akhil123's picture
End of training
977821b
---
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_keras_callback
model-index:
- name: Akhil123/emotions_classifier
results: []
---
<!-- This model card has been generated automatically according to the information Keras had access to. You should
probably proofread and complete it, then remove this comment. -->
# Akhil123/emotions_classifier
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co./google/vit-base-patch16-224-in21k) on an unknown dataset.
It achieves the following results on the evaluation set:
- Train Loss: 2.0827
- Validation Loss: 2.0793
- Train Accuracy: 0.1437
- Epoch: 19
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 0.0003, 'decay_steps': 12800, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False, 'weight_decay_rate': 0.01}
- training_precision: float32
### Training results
| Train Loss | Validation Loss | Train Accuracy | Epoch |
|:----------:|:---------------:|:--------------:|:-----:|
| 1.9720 | 1.6874 | 0.225 | 0 |
| 2.0874 | 2.0802 | 0.125 | 1 |
| 2.0744 | 2.0407 | 0.2313 | 2 |
| 2.0540 | 2.0760 | 0.1688 | 3 |
| 2.1039 | 2.0796 | 0.1125 | 4 |
| 2.0813 | 2.0794 | 0.1187 | 5 |
| 2.0802 | 2.0797 | 0.1187 | 6 |
| 2.0793 | 2.0790 | 0.125 | 7 |
| 2.0657 | 2.0128 | 0.2 | 8 |
| 2.0724 | 2.0920 | 0.125 | 9 |
| 2.0896 | 2.0744 | 0.1187 | 10 |
| 2.0844 | 2.0824 | 0.1187 | 11 |
| 2.0819 | 2.0755 | 0.125 | 12 |
| 2.0614 | 2.0392 | 0.1562 | 13 |
| 2.0676 | 2.0812 | 0.1187 | 14 |
| 2.0810 | 2.0792 | 0.1187 | 15 |
| 2.0826 | 2.0813 | 0.1187 | 16 |
| 2.0788 | 2.0770 | 0.15 | 17 |
| 2.0797 | 2.0733 | 0.125 | 18 |
| 2.0827 | 2.0793 | 0.1437 | 19 |
### Framework versions
- Transformers 4.31.0
- TensorFlow 2.12.0
- Datasets 2.14.4
- Tokenizers 0.13.3