SentenceTransformer
This is a sentence-transformers model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'gravel parking',
'asfalterad uppfart',
'rauhallinen naapurusto',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
trait-eval
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.7845 |
spearman_cosine | 0.8182 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,290,285 training samples
- Columns:
sentence_0
,sentence_1
, andlabel
- Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 3 tokens
- mean: 5.36 tokens
- max: 12 tokens
- min: 3 tokens
- mean: 5.47 tokens
- max: 11 tokens
- min: 0.0
- mean: 0.34
- max: 0.9
- Samples:
sentence_0 sentence_1 label kerrostalo
puuaita
0.1
corner unit
large yard
0.3
easy access to highway
oma pysäköinti
0.3
- Loss:
main.TemperatureScaledCosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 5multi_dataset_batch_sampler
: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1num_train_epochs
: 5max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.0warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: round_robin
Training Logs
Click to expand
Epoch | Step | Training Loss | trait-eval_spearman_cosine |
---|---|---|---|
0.0248 | 500 | 0.1261 | - |
0.0496 | 1000 | 0.1155 | 0.2026 |
0.0744 | 1500 | 0.119 | - |
0.0992 | 2000 | 0.1193 | 0.2516 |
0.1240 | 2500 | 0.118 | - |
0.1488 | 3000 | 0.1151 | 0.2638 |
0.1736 | 3500 | 0.1152 | - |
0.1984 | 4000 | 0.1093 | 0.2700 |
0.2232 | 4500 | 0.1077 | - |
0.2480 | 5000 | 0.109 | 0.2942 |
0.2728 | 5500 | 0.1015 | - |
0.2976 | 6000 | 0.1059 | 0.3171 |
0.3224 | 6500 | 0.1052 | - |
0.3472 | 7000 | 0.1042 | 0.3114 |
0.3720 | 7500 | 0.1006 | - |
0.3968 | 8000 | 0.1007 | 0.3328 |
0.4216 | 8500 | 0.1013 | - |
0.4464 | 9000 | 0.0938 | 0.3407 |
0.4712 | 9500 | 0.0971 | - |
0.4960 | 10000 | 0.0976 | 0.3430 |
0.5208 | 10500 | 0.0945 | - |
0.5456 | 11000 | 0.0937 | 0.3603 |
0.5704 | 11500 | 0.0919 | - |
0.5952 | 12000 | 0.0893 | 0.3916 |
0.6200 | 12500 | 0.0904 | - |
0.6448 | 13000 | 0.0866 | 0.3931 |
0.6696 | 13500 | 0.087 | - |
0.6944 | 14000 | 0.0848 | 0.4178 |
0.7192 | 14500 | 0.087 | - |
0.7440 | 15000 | 0.0827 | 0.4218 |
0.7688 | 15500 | 0.0851 | - |
0.7936 | 16000 | 0.0807 | 0.4414 |
0.8184 | 16500 | 0.0803 | - |
0.8432 | 17000 | 0.0803 | 0.4526 |
0.8680 | 17500 | 0.0784 | - |
0.8928 | 18000 | 0.0776 | 0.4592 |
0.9176 | 18500 | 0.0761 | - |
0.9424 | 19000 | 0.0739 | 0.4856 |
0.9672 | 19500 | 0.0724 | - |
0.9920 | 20000 | 0.0738 | 0.4928 |
1.0 | 20161 | - | 0.4863 |
1.0168 | 20500 | 0.0707 | - |
1.0416 | 21000 | 0.0699 | 0.4950 |
1.0664 | 21500 | 0.0637 | - |
1.0912 | 22000 | 0.0677 | 0.5000 |
1.1160 | 22500 | 0.0638 | - |
1.1408 | 23000 | 0.0653 | 0.5306 |
1.1656 | 23500 | 0.0661 | - |
1.1904 | 24000 | 0.0679 | 0.5292 |
1.2152 | 24500 | 0.0618 | - |
1.2400 | 25000 | 0.0616 | 0.5253 |
1.2648 | 25500 | 0.0626 | - |
1.2896 | 26000 | 0.0624 | 0.5422 |
1.3144 | 26500 | 0.0613 | - |
1.3392 | 27000 | 0.0623 | 0.5515 |
1.3640 | 27500 | 0.0601 | - |
1.3888 | 28000 | 0.0589 | 0.5606 |
1.4136 | 28500 | 0.06 | - |
1.4384 | 29000 | 0.0598 | 0.5774 |
1.4632 | 29500 | 0.0553 | - |
1.4880 | 30000 | 0.0596 | 0.5812 |
1.5128 | 30500 | 0.0547 | - |
1.5376 | 31000 | 0.0542 | 0.5956 |
1.5624 | 31500 | 0.0547 | - |
1.5872 | 32000 | 0.0545 | 0.6053 |
1.6120 | 32500 | 0.0525 | - |
1.6368 | 33000 | 0.0545 | 0.6137 |
1.6616 | 33500 | 0.0532 | - |
1.6864 | 34000 | 0.0525 | 0.6213 |
1.7112 | 34500 | 0.0529 | - |
1.7360 | 35000 | 0.0515 | 0.6152 |
1.7608 | 35500 | 0.0506 | - |
1.7856 | 36000 | 0.0502 | 0.6211 |
1.8104 | 36500 | 0.0513 | - |
1.8352 | 37000 | 0.0476 | 0.6344 |
1.8600 | 37500 | 0.0491 | - |
1.8848 | 38000 | 0.0485 | 0.6438 |
1.9096 | 38500 | 0.0488 | - |
1.9344 | 39000 | 0.0471 | 0.6591 |
1.9592 | 39500 | 0.049 | - |
1.9840 | 40000 | 0.0486 | 0.6692 |
2.0 | 40322 | - | 0.6619 |
2.0088 | 40500 | 0.044 | - |
2.0336 | 41000 | 0.0407 | 0.6729 |
2.0584 | 41500 | 0.0422 | - |
2.0832 | 42000 | 0.0427 | 0.6775 |
2.1080 | 42500 | 0.0425 | - |
2.1328 | 43000 | 0.043 | 0.6772 |
2.1576 | 43500 | 0.0426 | - |
2.1824 | 44000 | 0.04 | 0.6877 |
2.2072 | 44500 | 0.041 | - |
2.2320 | 45000 | 0.0422 | 0.6885 |
2.2568 | 45500 | 0.04 | - |
2.2816 | 46000 | 0.0399 | 0.6903 |
2.3064 | 46500 | 0.0414 | - |
2.3312 | 47000 | 0.0397 | 0.7008 |
2.3560 | 47500 | 0.0406 | - |
2.3808 | 48000 | 0.0395 | 0.7004 |
2.4056 | 48500 | 0.0375 | - |
2.4304 | 49000 | 0.0391 | 0.6964 |
2.4552 | 49500 | 0.0378 | - |
2.4800 | 50000 | 0.0379 | 0.7092 |
2.5048 | 50500 | 0.0394 | - |
2.5296 | 51000 | 0.0399 | 0.7122 |
2.5544 | 51500 | 0.0357 | - |
2.5792 | 52000 | 0.0362 | 0.7170 |
2.6040 | 52500 | 0.0383 | - |
2.6288 | 53000 | 0.0396 | 0.7218 |
2.6536 | 53500 | 0.037 | - |
2.6784 | 54000 | 0.0372 | 0.7312 |
2.7032 | 54500 | 0.0372 | - |
2.7280 | 55000 | 0.0365 | 0.7303 |
2.7528 | 55500 | 0.0364 | - |
2.7776 | 56000 | 0.0356 | 0.7366 |
2.8024 | 56500 | 0.034 | - |
2.8272 | 57000 | 0.036 | 0.7415 |
2.8520 | 57500 | 0.035 | - |
2.8768 | 58000 | 0.0355 | 0.7402 |
2.9016 | 58500 | 0.0331 | - |
2.9264 | 59000 | 0.0345 | 0.7475 |
2.9512 | 59500 | 0.0345 | - |
2.9760 | 60000 | 0.0348 | 0.7489 |
3.0 | 60483 | - | 0.7500 |
3.0008 | 60500 | 0.0351 | - |
3.0256 | 61000 | 0.0294 | 0.7537 |
3.0504 | 61500 | 0.0297 | - |
3.0752 | 62000 | 0.0301 | 0.7557 |
3.1000 | 62500 | 0.0311 | - |
3.1248 | 63000 | 0.0314 | 0.7628 |
3.1496 | 63500 | 0.0288 | - |
3.1744 | 64000 | 0.0311 | 0.7713 |
3.1992 | 64500 | 0.03 | - |
3.2240 | 65000 | 0.0307 | 0.7728 |
3.2488 | 65500 | 0.0321 | - |
3.2736 | 66000 | 0.028 | 0.7726 |
3.2984 | 66500 | 0.031 | - |
3.3232 | 67000 | 0.0283 | 0.7717 |
3.3480 | 67500 | 0.0302 | - |
3.3728 | 68000 | 0.0302 | 0.7808 |
3.3976 | 68500 | 0.0303 | - |
3.4224 | 69000 | 0.0285 | 0.7790 |
3.4472 | 69500 | 0.0304 | - |
3.4720 | 70000 | 0.0287 | 0.7856 |
3.4969 | 70500 | 0.0301 | - |
3.5217 | 71000 | 0.0285 | 0.7886 |
3.5465 | 71500 | 0.0295 | - |
3.5713 | 72000 | 0.0296 | 0.7899 |
3.5961 | 72500 | 0.0269 | - |
3.6209 | 73000 | 0.0278 | 0.7911 |
3.6457 | 73500 | 0.0299 | - |
3.6705 | 74000 | 0.0285 | 0.7898 |
3.6953 | 74500 | 0.0286 | - |
3.7201 | 75000 | 0.0281 | 0.7891 |
3.7449 | 75500 | 0.0308 | - |
3.7697 | 76000 | 0.0288 | 0.7893 |
3.7945 | 76500 | 0.0283 | - |
3.8193 | 77000 | 0.0264 | 0.7953 |
3.8441 | 77500 | 0.0265 | - |
3.8689 | 78000 | 0.0271 | 0.7942 |
3.8937 | 78500 | 0.0263 | - |
3.9185 | 79000 | 0.0278 | 0.7932 |
3.9433 | 79500 | 0.0258 | - |
3.9681 | 80000 | 0.028 | 0.7996 |
3.9929 | 80500 | 0.0284 | - |
4.0 | 80644 | - | 0.8017 |
4.0177 | 81000 | 0.0258 | 0.8022 |
4.0425 | 81500 | 0.027 | - |
4.0673 | 82000 | 0.0228 | 0.8034 |
4.0921 | 82500 | 0.0259 | - |
4.1169 | 83000 | 0.0257 | 0.8057 |
4.1417 | 83500 | 0.0248 | - |
4.1665 | 84000 | 0.025 | 0.8060 |
4.1913 | 84500 | 0.024 | - |
4.2161 | 85000 | 0.0267 | 0.8084 |
4.2409 | 85500 | 0.0244 | - |
4.2657 | 86000 | 0.0261 | 0.8058 |
4.2905 | 86500 | 0.0256 | - |
4.3153 | 87000 | 0.0252 | 0.8061 |
4.3401 | 87500 | 0.0246 | - |
4.3649 | 88000 | 0.0243 | 0.8095 |
4.3897 | 88500 | 0.0243 | - |
4.4145 | 89000 | 0.0251 | 0.8113 |
4.4393 | 89500 | 0.0247 | - |
4.4641 | 90000 | 0.0239 | 0.8109 |
4.4889 | 90500 | 0.0248 | - |
4.5137 | 91000 | 0.0235 | 0.8129 |
4.5385 | 91500 | 0.0246 | - |
4.5633 | 92000 | 0.0231 | 0.8132 |
4.5881 | 92500 | 0.0254 | - |
4.6129 | 93000 | 0.0249 | 0.8140 |
4.6377 | 93500 | 0.0229 | - |
4.6625 | 94000 | 0.025 | 0.8143 |
4.6873 | 94500 | 0.0244 | - |
4.7121 | 95000 | 0.0227 | 0.8158 |
4.7369 | 95500 | 0.0223 | - |
4.7617 | 96000 | 0.0232 | 0.8166 |
4.7865 | 96500 | 0.024 | - |
4.8113 | 97000 | 0.0243 | 0.8170 |
4.8361 | 97500 | 0.0229 | - |
4.8609 | 98000 | 0.0243 | 0.8172 |
4.8857 | 98500 | 0.0223 | - |
4.9105 | 99000 | 0.0252 | 0.8176 |
4.9353 | 99500 | 0.0242 | - |
4.9601 | 100000 | 0.0221 | 0.8182 |
4.9849 | 100500 | 0.022 | - |
5.0 | 100805 | - | 0.8182 |
Framework Versions
- Python: 3.13.2
- Sentence Transformers: 3.4.1
- Transformers: 4.49.0
- PyTorch: 2.7.0.dev20250221+cu128
- Accelerate: 1.4.0
- Datasets: 3.3.2
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 50
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Evaluation results
- Pearson Cosine on trait evalself-reported0.785
- Spearman Cosine on trait evalself-reported0.818