Edit model card

Llama-Instruct-8B

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2981

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.0291 0.1144 50 1.8063
1.3006 0.2288 100 0.6497
0.471 0.3432 150 0.4071
0.3923 0.4577 200 0.3856
0.3784 0.5721 250 0.3746
0.3671 0.6865 300 0.3592
0.3515 0.8009 350 0.3436
0.3334 0.9153 400 0.3328
0.3292 1.0297 450 0.3275
0.3249 1.1442 500 0.3237
0.3213 1.2586 550 0.3215
0.3177 1.3730 600 0.3180
0.3152 1.4874 650 0.3171
0.3141 1.6018 700 0.3142
0.3108 1.7162 750 0.3130
0.3124 1.8307 800 0.3120
0.3112 1.9451 850 0.3104
0.3091 2.0595 900 0.3088
0.3077 2.1739 950 0.3079
0.304 2.2883 1000 0.3065
0.3052 2.4027 1050 0.3054
0.3017 2.5172 1100 0.3046
0.3018 2.6316 1150 0.3039
0.3019 2.7460 1200 0.3030
0.3017 2.8604 1250 0.3021
0.3005 2.9748 1300 0.3017
0.2989 3.0892 1350 0.3009
0.299 3.2037 1400 0.3007
0.2989 3.3181 1450 0.2999
0.2978 3.4325 1500 0.2995
0.2957 3.5469 1550 0.2993
0.2969 3.6613 1600 0.2989
0.2961 3.7757 1650 0.2983
0.2932 3.8902 1700 0.2981

Framework versions

  • PEFT 0.13.2
  • Transformers 4.44.2
  • Pytorch 2.5.0+cu121
  • Datasets 3.0.2
  • Tokenizers 0.19.1
Downloads last month
7
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Ahsan221/Llama-Instruct-8B

Adapter
(449)
this model