Ahanaas commited on
Commit
943e5fd
·
verified ·
1 Parent(s): 5f982a6

Updated model card

Browse files
Files changed (1) hide show
  1. README.md +29 -27
README.md CHANGED
@@ -20,45 +20,53 @@ Make sure you have the following dependencies installed:
20
  You can install the required packages using pip:
21
 
22
  ```bash
23
- pip install torch transformers
 
 
 
 
 
24
  ```
25
 
26
  ```py
27
- # loading tokenizer & model
28
- model_id = "Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu"
 
 
 
 
 
 
29
 
30
- import torch
31
- from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments
 
32
 
33
- # Load base model
34
- model = AutoModelForCausalLM.from_pretrained(
35
  model_id,
 
 
 
36
  quantization_config=bnb_config,
37
- device_map='auto'
38
  )
39
- model.config.use_cache = False
40
- model.config.pretraining_tp = 1
41
-
42
- # Load tokenizer
43
- tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
44
  tokenizer.pad_token = tokenizer.eos_token
45
- tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
46
  ```
47
 
48
  ```py
49
- # Ignore warnings
50
- logging.set_verbosity(logging.CRITICAL)
51
-
52
  # Run text generation pipeline with our next model
53
- system_prompt = """"""
54
- prompt = ""
55
 
56
  pipe = pipeline(
57
  task="text-generation",
58
- model=model,
59
  tokenizer=tokenizer,
60
  max_new_tokens=128, # Increase this to allow for longer outputs
61
- temperature=0.5, # Encourages more varied outputs
62
  top_k=50, # Limits to the top 50 tokens
63
  do_sample=True, # Enables sampling
64
  return_full_text=True
@@ -67,11 +75,5 @@ pipe = pipeline(
67
  result = pipe(f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>")
68
  # print(result[0]['generated_text'])
69
  generated_text = result[0]['generated_text']
70
-
71
- # Remove the leading system prompt and special tokens
72
- # start_idx = generated_text.find("[/INST]") + len("[/INST]")
73
- # response_text = generated_text[start_idx:].strip() # Get text after [/INST]
74
-
75
- # Print the extracted response text
76
  print(generated_text)
77
  ```
 
20
  You can install the required packages using pip:
21
 
22
  ```bash
23
+ !git clone https://github.com/huggingface/transformers.git
24
+ %cd transformers
25
+ !git checkout <commit_id_for_4.47.0.dev0>
26
+ !pip install .
27
+ !pip install -q accelerate==0.34.2 bitsandbytes==0.44.1 peft==0.13.1
28
+
29
  ```
30
 
31
  ```py
32
+ # quantization of model
33
+ bnb_config = BitsAndBytesConfig(
34
+ load_in_4bit=True,
35
+ bnb_4bit_compute_dtype=torch.bfloat16,
36
+ bnb_4bit_use_double_quant=True,
37
+ bnb_4bit_quant_type='nf4'
38
+ )
39
+ ```
40
 
41
+ ```py
42
+ # Load model & tokenizer
43
+ model_id = "Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu"
44
 
45
+ from transformers import AutoTokenizer, LlamaTokenizer, PreTrainedTokenizerFast
46
+ base_model = AutoModelForCausalLM.from_pretrained(
47
  model_id,
48
+ low_cpu_mem_usage=True,
49
+ return_dict=True,
50
+ torch_dtype=torch.float16,
51
  quantization_config=bnb_config,
52
+ device_map=0,
53
  )
54
+ # Tokenizer
55
+ tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="right", use_fast=False)
 
 
 
56
  tokenizer.pad_token = tokenizer.eos_token
 
57
  ```
58
 
59
  ```py
 
 
 
60
  # Run text generation pipeline with our next model
61
+ system_prompt = ''''''
62
+ prompt = ''''''
63
 
64
  pipe = pipeline(
65
  task="text-generation",
66
+ model=base_model,
67
  tokenizer=tokenizer,
68
  max_new_tokens=128, # Increase this to allow for longer outputs
69
+ temperature=0.4, # Encourages more varied outputs
70
  top_k=50, # Limits to the top 50 tokens
71
  do_sample=True, # Enables sampling
72
  return_full_text=True
 
75
  result = pipe(f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>")
76
  # print(result[0]['generated_text'])
77
  generated_text = result[0]['generated_text']
 
 
 
 
 
 
78
  print(generated_text)
79
  ```