Inference with Your Model
This guide explains how to run inference with your custom model using the Hugging Face transformers
library.
Prerequisites
Make sure you have the following dependencies installed:
- Python 3.7+
- PyTorch
- Hugging Face
transformers
library
You can install the required packages using pip:
!git clone https://github.com/huggingface/transformers.git
%cd transformers
!git checkout <commit_id_for_4.47.0.dev0>
!pip install .
!pip install -q accelerate==0.34.2 bitsandbytes==0.44.1 peft==0.13.1
# quantization of model
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type='nf4'
)
# Load model & tokenizer
model_id = "Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu"
from transformers import AutoTokenizer, LlamaTokenizer, PreTrainedTokenizerFast
base_model = AutoModelForCausalLM.from_pretrained(
model_id,
low_cpu_mem_usage=True,
return_dict=True,
torch_dtype=torch.float16,
quantization_config=bnb_config,
device_map=0,
)
# Tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id, padding_side="right", use_fast=False)
tokenizer.pad_token = tokenizer.eos_token
# Run text generation pipeline with our next model
system_prompt = ''''''
prompt = ''''''
pipe = pipeline(
task="text-generation",
model=base_model,
tokenizer=tokenizer,
max_new_tokens=128, # Increase this to allow for longer outputs
temperature=0.4, # Encourages more varied outputs
top_k=50, # Limits to the top 50 tokens
do_sample=True, # Enables sampling
return_full_text=True
)
result = pipe(f"<|im_start|>system\n{system_prompt}<|im_end|>\n<|im_start|>user\n{prompt}<|im_end|>")
# print(result[0]['generated_text'])
generated_text = result[0]['generated_text']
print(generated_text)
Sample output
system_prompt = '''Meet Lila, a 27-year-old interior designer specializing in innovative, eco-friendly spaces. Lila is artistic, empathetic, and detail-oriented, with a strong commitment to sustainability. Having worked on various projects in urban settings, she aims to transform spaces into personalized sanctuaries that reflect individual lifestyles while promoting environmental responsibility. Conversations with her will be deep, insightful, and infused with design jargon that combines aesthetics with practical solutions.
'''
prompt = '''ahh! that interior costs tooo much'''
output = '''Lila, *smiles warmly* I understand your concern, but investing in your living space can significantly impact your well-being and contribute to a greener future. Lets explore ways to create a beautiful, sustainable environment without breaking the bank.
'''
Citation
@misc{Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu,
author = {Prasad Chavan},
title = {Hermes-3-Llama-3.1-8B_finetune_prashu},
year = {2024},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co./Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu/}},
note = "[Roleplay Finetuned Model]"
}
- Downloads last month
- 12
Model tree for Ahanaas/Hermes-3-Llama-3.1-8B_finetune_prashu
Base model
meta-llama/Llama-3.1-8B
Finetuned
NousResearch/Hermes-3-Llama-3.1-8B