Lumixion-e1-70k-fncall-qlora
Lumixion is the first ever vast array of multi-modal function calling models easily available for usage. This is the first iteration finetuned on 70+ samples with qlora and many other optimizations. If you would like to work on real-world multi-modal AI join our discord: LINK
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
tokenizer = AutoTokenizer.from_pretrained("AgoraX/Lumixion-e1-70k-fncall-qlora",trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"AgoraX/Lumixion-e1-70k-fncall-qlora", # path to the output directory
device_map="cuda",
trust_remote_code=True
).eval()
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "What are the objects in the image? What animals are present? Are there any people in the image?"},
])
print("sending model to chat")
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
## How to Get Started with the Model
output
[FUNCTION CALL]
{{
'type': 'object',
'properties': {{
'objects': {{
'type': 'array',
'description': 'The objects present in the image.',
'items': {{
'type': 'string',
'enum': ['dog', 'person', 'tree', 'path', 'sun']
}}
}},
'animals': {{
'type': 'array',
'description': 'The animals present in the image.',
'items': {{
'type': 'string',
'enum': ['dog']
}}
}},
'people': {{
'type': 'boolean',
'description': 'Whether there are people in the image.',
'enum': [true]
}}
}}
}}
[EXPECTED OUTPUT]
{{
'objects': ['dog', 'person', 'tree', 'path', 'sun'],
'animals': ['dog'],
'people': true
}}
Model Details
Model Description
- Developed by: Agora Research
- Model type: Vision Language Model
- Language(s) (NLP): English/Chinese
- Finetuned from model: Qwen-VL-Chat
Model Sources [optional]
- Repository: https://github.com/QwenLM/Qwen-VL
- Paper: https://arxiv.org/pdf/2308.12966.pdf
Uses
from transformers import AutoTokenizer, AutoModelForCausalLM
from transformers.generation import GenerationConfig
Note: The default behavior now has injection attack prevention off.
tokenizer = AutoTokenizer.from_pretrained("qwen/Qwen-VL-Chat",trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
"MODEL_PATH_HERE", # path to the output directory
device_map="cuda",
trust_remote_code=True
).eval()
Specify hyperparameters for generation (generation_config if transformers < 4.32.0)
#model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-VL-Chat", trust_remote_code=True)
# 1st dialogue turn
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "What are the objects in the image? What animals are present? Are there any people in the image?"},
])
print("sending model to chat")
response, history = model.chat(tokenizer, query=query, history=None)
print(response)
Print Results
[FUNCTION CALL]
{{
'type': 'object',
'properties': {{
'objects': {{
'type': 'array',
'description': 'The objects present in the image.',
'items': {{
'type': 'string',
'enum': ['dog', 'person', 'tree', 'path', 'sun']
}}
}},
'animals': {{
'type': 'array',
'description': 'The animals present in the image.',
'items': {{
'type': 'string',
'enum': ['dog']
}}
}},
'people': {{
'type': 'boolean',
'description': 'Whether there are people in the image.',
'enum': [true]
}}
}}
}}
[EXPECTED OUTPUT]
{{
'objects': ['dog', 'person', 'tree', 'path', 'sun'],
'animals': ['dog'],
'people': true
}}
Direct Use
Just send an image and ask a question in the text.
Recommendations
(recommended) transformers >= 4.32.0
How to Get Started with the Model
query = tokenizer.from_list_format([
{'image': 'https://images.rawpixel.com/image_800/cHJpdmF0ZS9sci9pbWFnZXMvd2Vic2l0ZS8yMDIzLTA4L3Jhd3BpeGVsX29mZmljZV8xNV9waG90b19vZl9hX2RvZ19ydW5uaW5nX3dpdGhfb3duZXJfYXRfcGFya19lcF9mM2I3MDQyZC0zNWJlLTRlMTQtOGZhNy1kY2Q2OWQ1YzQzZjlfMi5qcGc.jpg'}, # Either a local path or an url
{'text': "QUESTIONS/QUERIES GO HERE"},
])
Training Details
Training Data
Custom Function Calling Dataset with 70k examples
Training Procedure
qlora for 3 epochs
- Downloads last month
- 15
Inference API (serverless) does not yet support model repos that contain custom code.
Model tree for AgoraX/Lumixion-e1-70k-fncall-qlora
Base model
Qwen/Qwen-VL-Chat