midm_7B_nsmc / README.md
AeNyoung's picture
Update README.md
5296c4e
metadata
license: cc-by-nc-4.0
base_model: KT-AI/midm-bitext-S-7B-inst-v1
tags:
  - generated_from_trainer
model-index:
  - name: midm-7B-nsmc
    results: []

midm-7B-nsmc

This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an 'nsmc' dataset.

Model description

[KT-AI/midm-bitext-S-7B-inst-v1]๋ฅผ nsmc ๋ฐ์ดํ„ฐ์…‹์„ ์ด์šฉํ•˜์—ฌ ๋ฏธ์„ธํŠœ๋‹ํ•จ.

Intended uses & limitations

๋ชฉ์ : ์˜ํ™” ๋ฆฌ๋ทฐ ํŒ๋‹จ (๊ธ์ •/๋ถ€์ •)

Training and evaluation data

  • training data: nsmc์˜ train ๋ฐ์ดํ„ฐ ์ค‘ ์ƒ์œ„ 2000๊ฐœ
  • evaluation data: nsmc์˜ test ๋ฐ์ดํ„ฐ ์ค‘ ์ƒ์œ„ 1000๊ฐœ

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

  • global_step=300
  • training_loss=1.1095316060384115
  • metrics={'train_runtime': 1012.8423, 'train_samples_per_second': 0.592,
    'train_steps_per_second': 0.296,
    'total_flos': 9315508499251200.0,
    'train_loss': 1.1095316060384115,
    'epoch': 0.3}

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Accuracy

TP TN
PP 477 79
PN 31 413
  • accuracy: 0.89