|
---
|
|
license: cc-by-nc-4.0
|
|
tags:
|
|
- generated_from_trainer
|
|
- instruction fine-tuning
|
|
model-index:
|
|
- name: flan-t5-small-distil-v2
|
|
results: []
|
|
language:
|
|
- en
|
|
pipeline_tag: text2text-generation
|
|
widget:
|
|
- text: >-
|
|
how can I become more healthy?
|
|
example_title: example
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
<p align="center" width="100%">
|
|
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini.png" alt="Title" style="width: 100%; min-width: 300px; display: block; margin: auto;"></a>
|
|
</p>
|
|
|
|
# LaMini-Flan-T5-248M
|
|
|
|
[![Model License](https://img.shields.io/badge/Model%20License-CC%20By%20NC%204.0-red.svg)]()
|
|
|
|
This model is one of our LaMini-LM model series in paper "[LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions](https://github.com/mbzuai-nlp/lamini-lm)". This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) on [LaMini-instruction dataset](https://huggingface.co./datasets/MBZUAI/LaMini-instruction) that contains 2.58M samples for instruction fine-tuning. For more information about our dataset, please refer to our [project repository](https://github.com/mbzuai-nlp/lamini-lm/).
|
|
You can view other models of LaMini-LM series as follows. Models with ✩ are those with the best overall performance given their size/architecture, hence we recommend using them. More details can be seen in our paper.
|
|
|
|
<table>
|
|
<thead>
|
|
<tr>
|
|
<th>Base model</th>
|
|
<th colspan="4">LaMini-LM series (#parameters)</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>
|
|
<tr>
|
|
<td>T5</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-t5-61m" target="_blank" rel="noopener noreferrer">LaMini-T5-61M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-t5-223m" target="_blank" rel="noopener noreferrer">LaMini-T5-223M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-t5-738m" target="_blank" rel="noopener noreferrer">LaMini-T5-738M</a></td>
|
|
<td></td>
|
|
</tr>
|
|
<tr>
|
|
<td>Flan-T5</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-flan-t5-77m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-77M</a>✩</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-flan-t5-248m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-248M</a>✩</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-flan-t5-783m" target="_blank" rel="noopener noreferrer">LaMini-Flan-T5-783M</a>✩</td>
|
|
<td></td>
|
|
</tr>
|
|
<tr>
|
|
<td>Cerebras-GPT</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-cerebras-111m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-111M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-cerebras-256m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-256M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-cerebras-590m" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-590M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-cerebras-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Cerebras-1.3B</a></td>
|
|
</tr>
|
|
<tr>
|
|
<td>GPT-2</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-gpt-124m" target="_blank" rel="noopener noreferrer">LaMini-GPT-124M</a>✩</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-gpt-774m" target="_blank" rel="noopener noreferrer">LaMini-GPT-774M</a>✩</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-gpt-1.5b" target="_blank" rel="noopener noreferrer">LaMini-GPT-1.5B</a>✩</td>
|
|
<td></td>
|
|
</tr>
|
|
<tr>
|
|
<td>GPT-Neo</td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-neo-125m" target="_blank" rel="noopener noreferrer">LaMini-Neo-125M</a></td>
|
|
<td><a href="https://huggingface.co./MBZUAI/lamini-neo-1.3b" target="_blank" rel="noopener noreferrer">LaMini-Neo-1.3B</a></td>
|
|
<td></td>
|
|
<td></td>
|
|
</tr>
|
|
<tr>
|
|
<td>GPT-J</td>
|
|
<td colspan="4">coming soon</td>
|
|
</tr>
|
|
<tr>
|
|
<td>LLaMA</td>
|
|
<td colspan="4">coming soon</td>
|
|
</tr>
|
|
|
|
|
|
</tbody>
|
|
</table>
|
|
|
|
|
|
## Use
|
|
|
|
### Intended use
|
|
We recommend using the model to response to human instructions written in natural language.
|
|
|
|
We now show you how to load and use our model using HuggingFace `pipeline()`.
|
|
|
|
```python
|
|
# pip install -q transformers
|
|
from transformers import pipeline
|
|
|
|
checkpoint = "{model_name}"
|
|
|
|
model = pipeline('text2text-generation', model = checkpoint)
|
|
|
|
input_prompt = 'Please let me know your thoughts on the given place and why you think it deserves to be visited: \n"Barcelona, Spain"'
|
|
generated_text = model(input_prompt, max_length=512, do_sample=True)[0]['generated_text']
|
|
|
|
print("Response", generated_text)
|
|
```
|
|
|
|
## Training Procedure
|
|
|
|
<p align="center" width="100%">
|
|
<a><img src="https://raw.githubusercontent.com/mbzuai-nlp/lamini-lm/main/images/lamini-pipeline.drawio.png" alt="Title" style="width: 100%; min-width: 250px; display: block; margin: auto;"></a>
|
|
</p>
|
|
|
|
We initialize with [google/flan-t5-base](https://huggingface.co./google/flan-t5-base) and fine-tune it on our [LaMini-instruction dataset](https://huggingface.co./datasets/MBZUAI/LaMini-instruction). Its total number of parameters is 248M.
|
|
|
|
### Training Hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 0.0005
|
|
- train_batch_size: 128
|
|
- eval_batch_size: 64
|
|
- seed: 42
|
|
- gradient_accumulation_steps: 4
|
|
- total_train_batch_size: 512
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- num_epochs: 5
|
|
|
|
## Evaluation
|
|
We conducted two sets of evaluations: automatic evaluation on downstream NLP tasks and human evaluation on user-oriented instructions. For more detail, please refer to our [paper]().
|
|
|
|
## Limitations
|
|
|
|
More information needed
|
|
|
|
|
|
# Citation
|
|
|
|
```bibtex
|
|
@article{lamini-lm,
|
|
author = {Minghao Wu and
|
|
Abdul Waheed and
|
|
Chiyu Zhang and
|
|
Muhammad Abdul-Mageed and
|
|
Alham Fikri Aji
|
|
},
|
|
title = {LaMini-LM: A Diverse Herd of Distilled Models from Large-Scale Instructions},
|
|
journal = {CoRR},
|
|
volume = {abs/2304.14402},
|
|
year = {2023},
|
|
url = {https://arxiv.org/abs/2304.14402},
|
|
eprinttype = {arXiv},
|
|
eprint = {2304.14402}
|
|
}
|
|
``` |