Gemma-2B-chat / README.md
Aditya149's picture
End of training
aff3145 verified
|
raw
history blame
9.19 kB
metadata
license: other
library_name: peft
tags:
  - trl
  - sft
  - generated_from_trainer
base_model: google/gemma-2b
model-index:
  - name: Gemma-2b-chat
    results: []

Gemma-2b-chat

This model is a fine-tuned version of google/gemma-2b on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 3
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
2.974 0.02 100 2.9419
3.1998 0.04 200 2.9117
2.9839 0.06 300 2.8745
2.9379 0.08 400 2.8328
2.9392 0.1 500 2.7909
2.7735 0.12 600 2.7461
2.7835 0.14 700 2.7075
2.7794 0.16 800 2.6695
2.7355 0.18 900 2.6363
2.7805 0.2 1000 2.6104
2.556 0.22 1100 2.5871
2.596 0.24 1200 2.5652
2.5838 0.26 1300 2.5432
2.6598 0.28 1400 2.5247
2.5475 0.3 1500 2.5100
2.4459 0.31 1600 2.4954
2.502 0.33 1700 2.4829
2.557 0.35 1800 2.4702
2.4944 0.37 1900 2.4604
2.4774 0.39 2000 2.4528
2.4287 0.41 2100 2.4453
2.5386 0.43 2200 2.4381
2.363 0.45 2300 2.4322
2.514 0.47 2400 2.4272
2.413 0.49 2500 2.4225
2.4667 0.51 2600 2.4176
2.4724 0.53 2700 2.4128
2.3949 0.55 2800 2.4084
2.4822 0.57 2900 2.4044
2.4556 0.59 3000 2.4009
2.4067 0.61 3100 2.3977
2.3911 0.63 3200 2.3947
2.3446 0.65 3300 2.3923
2.3358 0.67 3400 2.3891
2.3213 0.69 3500 2.3867
2.4041 0.71 3600 2.3840
2.4759 0.73 3700 2.3818
2.4622 0.75 3800 2.3801
2.3512 0.77 3900 2.3778
2.3653 0.79 4000 2.3760
2.3455 0.81 4100 2.3744
2.4364 0.83 4200 2.3724
2.2805 0.85 4300 2.3706
2.5448 0.87 4400 2.3681
2.3061 0.89 4500 2.3674
2.2572 0.9 4600 2.3657
2.3259 0.92 4700 2.3645
2.4078 0.94 4800 2.3633
2.3841 0.96 4900 2.3618
2.5439 0.98 5000 2.3604
2.4556 1.0 5100 2.3593
2.3752 1.02 5200 2.3582
2.3415 1.04 5300 2.3567
2.2824 1.06 5400 2.3555
2.3748 1.08 5500 2.3541
2.2535 1.1 5600 2.3534
2.3277 1.12 5700 2.3530
2.394 1.14 5800 2.3518
2.4876 1.16 5900 2.3511
2.4705 1.18 6000 2.3503
2.4394 1.2 6100 2.3499
2.3898 1.22 6200 2.3488
2.3789 1.24 6300 2.3483
2.4315 1.26 6400 2.3472
2.4065 1.28 6500 2.3463
2.3331 1.3 6600 2.3456
2.3415 1.32 6700 2.3452
2.3433 1.34 6800 2.3448
2.337 1.36 6900 2.3434
2.4492 1.38 7000 2.3425
2.3757 1.4 7100 2.3419
2.4124 1.42 7200 2.3412
2.2778 1.44 7300 2.3408
2.3127 1.46 7400 2.3401
2.2558 1.48 7500 2.3398
2.4419 1.49 7600 2.3394
2.3052 1.51 7700 2.3388
2.3212 1.53 7800 2.3387
2.3989 1.55 7900 2.3376
2.3201 1.57 8000 2.3372
2.4111 1.59 8100 2.3364
2.3243 1.61 8200 2.3361
2.3158 1.63 8300 2.3360
2.3065 1.65 8400 2.3357
2.3627 1.67 8500 2.3353
2.4604 1.69 8600 2.3348
2.2451 1.71 8700 2.3346
2.3559 1.73 8800 2.3342
2.4832 1.75 8900 2.3338
2.5064 1.77 9000 2.3335
2.2961 1.79 9100 2.3336
2.4394 1.81 9200 2.3334
2.4337 1.83 9300 2.3332
2.2984 1.85 9400 2.3328
2.2544 1.87 9500 2.3325
2.4421 1.89 9600 2.3321
2.2737 1.91 9700 2.3322
2.4483 1.93 9800 2.3319
2.4371 1.95 9900 2.3314
2.3184 1.97 10000 2.3312
2.2936 1.99 10100 2.3308
2.432 2.01 10200 2.3304
2.3306 2.03 10300 2.3301
2.3926 2.05 10400 2.3301
2.358 2.07 10500 2.3300
2.341 2.08 10600 2.3298
2.3886 2.1 10700 2.3297
2.2559 2.12 10800 2.3296
2.4121 2.14 10900 2.3294
2.3301 2.16 11000 2.3292
2.2807 2.18 11100 2.3290
2.3028 2.2 11200 2.3288
2.2957 2.22 11300 2.3289
2.296 2.24 11400 2.3289
2.248 2.26 11500 2.3288
2.3639 2.28 11600 2.3286
2.4383 2.3 11700 2.3284
2.2921 2.32 11800 2.3282
2.4594 2.34 11900 2.3282
2.4243 2.36 12000 2.3280
2.344 2.38 12100 2.3280
2.3063 2.4 12200 2.3279
2.3875 2.42 12300 2.3280
2.3502 2.44 12400 2.3278
2.3034 2.46 12500 2.3278
2.4234 2.48 12600 2.3277
2.2829 2.5 12700 2.3277
2.3965 2.52 12800 2.3277
2.4046 2.54 12900 2.3274
2.3374 2.56 13000 2.3274
2.1988 2.58 13100 2.3274
2.3893 2.6 13200 2.3274
2.3621 2.62 13300 2.3273
2.2888 2.64 13400 2.3273
2.3928 2.66 13500 2.3273
2.3523 2.68 13600 2.3272
2.3158 2.69 13700 2.3273
2.3453 2.71 13800 2.3273
2.3113 2.73 13900 2.3272
2.3878 2.75 14000 2.3272
2.3361 2.77 14100 2.3273
2.2343 2.79 14200 2.3273
2.2963 2.81 14300 2.3271
2.252 2.83 14400 2.3272
2.4307 2.85 14500 2.3272
2.2778 2.87 14600 2.3272
2.3832 2.89 14700 2.3272
2.3611 2.91 14800 2.3272
2.3556 2.93 14900 2.3271
2.3712 2.95 15000 2.3272
2.3667 2.97 15100 2.3272
2.3816 2.99 15200 2.3272

Framework versions

  • PEFT 0.9.0
  • Transformers 4.38.2
  • Pytorch 2.1.2
  • Datasets 2.17.1
  • Tokenizers 0.15.2