Abdou's picture
update model card README.md
5a71bfd
|
raw
history blame
2.04 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - coco
metrics:
  - rouge
  - bleu
model-index:
  - name: vit-swin-base-224-gpt2-image-captioning
    results: []

vit-swin-base-224-gpt2-image-captioning

This model is a fine-tuned version of on the coco dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7923
  • Rouge1: 41.8451
  • Rouge2: 16.3493
  • Rougel: 38.0288
  • Rougelsum: 38.049
  • Bleu: 10.2776
  • Gen Len: 11.2946

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Bleu Gen Len
1.0018 0.38 2000 0.8860 38.6537 13.8145 35.3932 35.3935 8.2448 11.2946
0.8827 0.75 4000 0.8395 40.0458 14.8829 36.5321 36.5366 9.1169 11.2946
0.8378 1.13 6000 0.8140 41.2736 15.9576 37.5504 37.5512 9.871 11.2946
0.7913 1.51 8000 0.8012 41.6642 16.1987 37.8786 37.8891 10.0786 11.2946
0.7794 1.89 10000 0.7933 41.9119 16.3738 38.1062 38.1292 10.288 11.2946

Framework versions

  • Transformers 4.26.0
  • Pytorch 1.13.1+cu116
  • Datasets 2.9.0
  • Tokenizers 0.13.2